Suppose -184*v = -255*v. Let t® be the second derivative of 1⁄6*r3 + 1⁄80*r5 + 17*r + v + 0*r2 + 1⁄12*r4. Factor t(f).
f*(f + 2)**2⁄4
Let n be (30/(-12) + 3 + -4)10. Let f be (-5)/(-8)(-42)/n. Determine o so that f + o**2 - 7⁄4*o = 0.
3⁄4, 1
Let s(b) be the first derivative of b4⁄5 - 44*b3⁄15 - 16*b**2 - 112*b/5 - 1615. Factor s(v).
4(v - 14)(v + 1)*(v + 2)/5
Let d be (30/(-48)*182)/((-1)/(-4)). Let w = 6827⁄15 + d. Factor 0 - w*a + 4⁄15*a**2.
2a(2*a - 1)/15
Let s(n) be the first derivative of n2 + 2⁄15*n3 + 25 + 12⁄5*n. Factor s(x).
2(x + 2)(x + 3)/5
Let -31*l + 98⁄11 - 7⁄11*l**2 = 0. Calculate l.
-49, 2⁄7
Let k(g) be the third derivative of g7⁄1890 + g6⁄90 + 7*g5⁄108 + g4⁄9 - 1062*g**2. Factor k(m).
m(m + 1)(m + 3)*(m + 8)/9
Suppose -19 + 21 = m + 2*b, -4*m = 5*b - 11. Let t = 8 + 2. Factor -4*h4 - t*h3 - 2*h4 - 14*h + m + 18*h2 + 5*h4 + 3*h4.
2(h - 2)(h - 1)**3
Factor 1⁄4*i4 + 15⁄2*i3 + 0 - 31⁄4*i**2 + 0*i.
i*2(i - 1)*(i + 31)/4
Let s(i) = -5*i2 + 1650*i + 136150. Let u(v) = 7*v2 - 1650*v - 136155. Let a(q) = -6*s(q) - 5*u(q). Factor a(b).
-5*(b + 165)**2