Let n(l) be the second derivative of l5⁄35 - 12*l4⁄7 - 8*l3⁄21 + 288*l2⁄7 + 98*l + 2. Find i, given that n(i) = 0.
-2, 2, 36
Let g(k) be the first derivative of -1⁄20*k5 + 3⁄8*k2 - 7⁄12*k3 - 27 + 5⁄16*k4 + 0*k. Factor g(f).
-f(f - 3)(f - 1)**2⁄4
Let x = 4538 - 4531. Let u(t) be the third derivative of 0*t3 - 1⁄30*t5 + 0*t - 1⁄36*t4 - 1⁄60*t6 - 1⁄315*tx + 0 + 4*t2. Let u(d) = 0. What is d?
-1, 0
Let j(t) be the second derivative of 1⁄2*t4 + 2⁄3*t3 + 0 - 15*t - 1⁄21*t7 + 0*t2 - 1⁄5*t6 - 1⁄10*t5. Find z such that j(z) = 0.
-2, -1, 0, 1
Let a = -50614⁄207 - -5634⁄23. What is f in -8⁄9*f3 - 4⁄9 - a*f2 + 10⁄9*f - 2⁄9*f5 + 8⁄9*f4 = 0?
-1, 1, 2
Let g(u) = -u2 + 4*u + 9. Let b be g(6). Let d be (-4)/b + 8⁄12. Factor -17 + 22 - 7*x2 + 5*x3 - 5*x + 2*xd.
5*(x - 1)*2(x + 1)
Let y(p) be the second derivative of -p8⁄20160 - p7⁄3780 + 29*p**4⁄6 - 27*p. Let c(q) be the third derivative of y(q). Let c(a) = 0. Calculate a.
-2, 0
Let r© = 5*c + 3. Let i(m) = 81*m + 48. Let d(o) = -2*i(o) + 33*r(o). Let l be d(2). Factor 1 + 24 - 11*v - l*v - 3*v2 - 2*v2.
-5(v - 1)(v + 5)
Let t(u) be the third derivative of -u6⁄480 + 29*u5⁄30 - 4407*u4⁄32 - 4563*u3⁄4 + 2*u**2 + 1052*u. Factor t(x).
-(x - 117)*2(x + 2)/4
Suppose 8*w - 20 = 3*w. Solve -14*t2 + 2*t4 - t4 + 4*t3 - 4*t + 17*t**2 - w = 0.
-2, -1, 1