Let -17820*b2 - 20538*b2 + 70965*b - 2*b4 + 22461 - 15206*b + 15077 + 551*b3 = 0. Calculate b.
-1⁄2, 2, 137
Let f(w) = w3 - 14*w2 - 6*w + 89. Let g be f(14). Let i(z) be the first derivative of 0*z4 + 1⁄2*z3 - 1⁄20*zg + 3⁄4*z + 11 - z2. Factor i(t).
-(t - 1)*3(t + 3)/4
Let b(i) = -i3 + i. Let r(a) be the first derivative of 2*a5⁄5 - 2*a - 147. Suppose -1 = -u + 2*u. Let l(x) = u*r(x) + 4*b(x). What is h in l(h) = 0?
-1, 1
Let a = -139⁄18 - -49⁄6. Let x be (3⁄18)/(171⁄144 + -1). Solve 0 + a*i4 + 14⁄3*i3 - 14⁄9*i5 + x*i - 40⁄9*i2 = 0 for i.
-2, 0, 2⁄7, 1
Let t(k) be the second derivative of -k5⁄170 + 281*k4⁄34 - 78961*k3⁄17 + 22188041*k2⁄17 - 1352*k. Let t(w) = 0. What is w?
281
Factor 56⁄3*g2 + g3 + 83⁄3*g - 34⁄3.
(g + 2)(g + 17)(3*g - 1)/3
Let k(o) = -21*o + 27. Let u be k(-11). Suppose 3*j = 2*j + u. Factor -6 + 246*b3 - j*b3 - 4*b + 9*b5 + 7*b + 18*b2 - 12*b**4.
3*(b - 1)*3(b + 1)*(3*b + 2)
Let d(t) = t2 + 18*t + 83. Let l be d(-10). Suppose 5*f + l*c - 10 = 0, 22*f - 23*f + 2 = c. Factor 1⁄8*xf - 1⁄4*x + 0 - 1⁄8*x4 + 1⁄4*x3.
-x(x - 2)(x - 1)*(x + 1)/8
Let a(s) be the third derivative of 0 + 10*s2 - 1⁄60*s5 + 5⁄6*s3 + 0*s + 0*s4 + 1⁄45*s**6. Let c(o) be the first derivative of a(o). Factor c(n).
2n(4*n - 1)
Let h® be the second derivative of 4⁄3*r3 + 15*r + 1⁄3*r4 - 2 - 6*r**2. Factor h(f).
4(f - 1)(f + 3)