Let m(t) be the first derivative of -t3⁄7 - 459*t2⁄14 + 119. Find h such that m(h) = 0.
-153, 0
Let h be 186/(-144) - (80/(-12))/5. Let y(i) be the third derivative of 9*i2 + 0*i + 5⁄6*i3 + 0 + 5⁄24*i4 - 1⁄12*i5 - h*i**6. Solve y(w) = 0 for w.
-1, 1
Let r be (-112)/(-60) + (-26)/(-195). Determine x so that -56⁄19*x - 392⁄19 - 2⁄19*x**r = 0.
-14
Let b = 2144⁄3 + -713. Let v(z) be the first derivative of -5⁄2*z4 - 10 - 10*z - b*z3 + 25⁄2*z**2. Factor v(x).
-5(x - 1)(x + 2)*(2*x - 1)
Let x(t) be the first derivative of -2*t2 - 1⁄20*t5 + 0*t - 8 - 9⁄2*t3 - 3⁄4*t4. Let w(h) be the second derivative of x(h). Factor w(u).
-3*(u + 3)**2
Let x be (35⁄5 - 3)/((-14)/(-168)). Let -36*p3 - 32⁄3 - x*p - 72*p2 = 0. What is p?
-2⁄3
Factor -i4 - 8696*i + 5*i4 - 6530*i - 676*i3 + 28896*i2 - 12998*i.
4i(i - 84)*2(i - 1)
Let p be 2257 - (0 + -1 - (0 + -3)). Factor -p + 38*d - 97*d - 73*d - 3*d**2 + 803.
-3*(d + 22)**2
Let g(i) = 22*i5 - 62*i4 + 426*i3 - 1134*i2 + 988*i. Let o(m) = 2*m5 - m4 + m**2 + 2*m. Let v(n) = g(n) - 10*o(n). Determine u, given that v(u) = 0.
0, 2, 11
Let p(k) be the third derivative of k10⁄151200 - k9⁄60480 - k5⁄20 + 5*k3⁄6 - 12*k**2 - k. Let f(i) be the third derivative of p(i). Factor f(j).
j*3(j - 1)