Let m(t) be the first derivative of -t37 - 459*t214 + 119. Find h such that m(h) = 0.

-153, 0

Let h be 186/(-144) - (80/(-12))/5. Let y(i) be the third derivative of 9*i2 + 0*i + 56*i3 + 0 + 524*i4 - 112*i5 - h*i**6. Solve y(w) = 0 for w.

-1, 1

Let r be (-112)/(-60) + (-26)/(-195). Determine x so that -5619*x - 39219 - 219*x**r = 0.

-14

Let b = 21443 + -713. Let v(z) be the first derivative of -52*z4 - 10 - 10*z - b*z3 + 252*z**2. Factor v(x).

-5(x - 1)(x + 2)*(2*x - 1)

Let x(t) be the first derivative of -2*t2 - 120*t5 + 0*t - 8 - 92*t3 - 34*t4. Let w(h) be the second derivative of x(h). Factor w(u).

-3*(u + 3)**2

Let x be (355 - 3)/((-14)/(-168)). Let -36*p3 - 323 - x*p - 72*p2 = 0. What is p?

-23

Factor -i4 - 8696*i + 5*i4 - 6530*i - 676*i3 + 28896*i2 - 12998*i.

4i(i - 84)*2(i - 1)

Let p be 2257 - (0 + -1 - (0 + -3)). Factor -p + 38*d - 97*d - 73*d - 3*d**2 + 803.

-3*(d + 22)**2

Let g(i) = 22*i5 - 62*i4 + 426*i3 - 1134*i2 + 988*i. Let o(m) = 2*m5 - m4 + m**2 + 2*m. Let v(n) = g(n) - 10*o(n). Determine u, given that v(u) = 0.

0, 2, 11

Let p(k) be the third derivative of k10151200 - k960480 - k520 + 5*k36 - 12*k**2 - k. Let f(i) be the third derivative of p(i). Factor f(j).

j*3(j - 1)