Let p(i) be the second derivative of -i7⁄189 - 4*i6⁄135 + i5⁄90 + 8*i4⁄27 + 4*i**3⁄9 - 948*i. What is t in p(t) = 0?
-3, -2, -1, 0, 2
Let h(k) be the second derivative of k7⁄49 + 29*k6⁄105 + 29*k5⁄70 - 193*k4⁄42 + 8*k3 - 36*k2⁄7 + k + 21. Solve h(d) = 0 for d.
-6, 1⁄3, 1
Let f = 422 + -422. Let q be (2⁄15)/(2/(-336)*-8). Factor f + q*z**2 + 4⁄5*z.
2z(7*z + 2)/5
Let c(g) be the first derivative of g4⁄20 - 22*g3⁄15 + 41*g**2⁄10 - 4*g - 1274. Let c(m) = 0. Calculate m.
1, 20
Suppose 12*w - 237 + 57 - 2*w2 + 7*w2 + 30*w + 38*w = 0. Calculate w.
-18, 2
Let b be 120/(-54)*-6 + (30 - 38). Factor -16⁄3*m2 + 0 - 4⁄3*m4 + 0*m + b*m**3.
-4*m2*(m - 2)2⁄3
Let -24*s3 + 546*s + 18445*s2 + 0*s4 - 4*s4 + 3*s4 - 18554*s2 + 1352 = 0. What is s?
-13, -2, 4
Let m(f) = 16*f2 + 9*f + 0 - 15*f2 + 22 - 26*f. Let z be m(16). Factor 3 + 6*p2 - z*p - 6 - 9*p2.
-3*(p + 1)**2
Let y(g) = 9*g2 + 55*g - 1230. Let f(n) = -16*n2 - 113*n + 2459. Let a(v) = -5*f(v) - 9*y(v). What is x in a(x) = 0?
35
Let y© = 2*c2 - 49*c + 237. Let z be y(18). Let g(p) be the first derivative of -1⁄9*pz - 4⁄3*p + 12 - 2⁄3*p**2. Find l, given that g(l) = 0.
-2