Let q(b) = 5*b + 80. Let h be q(0). Factor 9*w2 - w2 - 13*w**2 + h.
-5(w - 4)(w + 4)
Let c(b) = -4*b2 + 215*b + 78. Let p be c(54). Solve 4*t4 - 52*t + 134⁄3*t2 - 19*t3 - 1⁄3*t**5 + p = 0 for t.
2, 3
Let l be (1 + -1)/(0/(-1) - 3). Suppose 3*x - 3 - 15 = l. Find c, given that x - 2 - 4*c**2 + 4*c - 4*c = 0.
-1, 1
Let h(s) be the first derivative of -s6⁄15 - 82*s5⁄25 - 219*s4⁄5 - 668*s3⁄3 - 245*s**2 + 1350*s - 1533. Determine t so that h(t) = 0.
-27, -5, 1
Let r(i) = 11*i2 + 9*i + 3. Let y(o) = 2 + 15*o - 24*o + 4*o2 + 13*o. Let x(n) = -2*r(n) + 5*y(n). Factor x(z).
-2(z - 2)(z + 1)
Let l be (-6)/8*9/(288/(-128)). Suppose 0*i2 + i4 - 3⁄2*i**l + 0 + 1⁄2*i = 0. Calculate i.
-1⁄2, 0, 1
Let r = -95416 - -95419. Let -5⁄4*tr + 2 + t + 1⁄2*t4 + 1⁄4*t5 - 5⁄2*t2 = 0. What is t?
-2, -1, 1, 2
Solve -16⁄7*o4 - 8⁄7*o3 + 2*o - 6⁄7*o5 + 12⁄7*o2 + 4⁄7 = 0 for o.
-1, -2⁄3, 1
Let i = -4 - -10. Let v(z) = -2*z + 14. Let r be v(i). Factor 7 - 5*cr + 4 - 31*c + 10*c + 25*c3 - 2.
(c + 1)*(5*c - 3)**2
Let o be -1 + 44⁄16 + 1. Let w(x) be the second derivative of 3*x2 - o*x4 + 0 - 13*x + 1⁄2*x3 + 33⁄20*x5 - 3⁄10*x**6. Determine i so that w(i) = 0.
-1⁄3, 1, 2