Let g(p) be the first derivative of -1⁄20*p5 + 25 + 0*p3 + 0*p + 0*p2 + 3⁄16*p4. Solve g(k) = 0 for k.
0, 3
Let j(z) = z3 + 4*z2 - 7*z - 3. Let s = 378 - 381. Let w be j(s). Let -w*p**2 - 1⁄3 + 6*p = 0. Calculate p.
1⁄9
Let -64⁄9*m3 + 28⁄3 + 2⁄9*m5 + 8⁄3*m4 - 12*m2 + 62⁄9*m = 0. Calculate m.
-14, -1, 1, 3
Let n(v) = -6*v5 - 5*v4 + 8*v3 - 11*v2 - 32*v + 11. Let z© = c5 + c4 + c3 - c2 + 4*c + 1. Let w(x) = n(x) + 5*z(x). Solve w® = 0 for r.
-4, -1, 1, 2
Let k(h) be the second derivative of h8⁄840 + h7⁄420 + 20*h**3⁄3 + 7*h + 1. Let b(t) be the second derivative of k(t). Factor b(q).
2*q*3(q + 1)
Let b(n) be the third derivative of n9⁄2520 + n8⁄1680 + 5*n4⁄2 + 74*n2. Let o(y) be the second derivative of b(y). Factor o(s).
2*s*3(3*s + 2)
Suppose -14*w + 10 = -19*w. Let z be (w/5)/(1/(-10)). Factor 55*b2 + 4*b3 + b3 + 60*b + 53 - 33 - 15*bz - 5*b**5.
-5(b - 2)(b + 1)*3(b + 2)
Suppose -915*k - 486 + 1202 = -2029. Suppose 3⁄2*l4 - 9⁄2*lk - 3⁄2*l2 + 3*l + 3⁄2*l5 + 0 = 0. Calculate l.
-2, -1, 0, 1
Let j(h) be the first derivative of -h4 - 116*h3⁄3 - 448*h**2 - 784*h - 43. Factor j(g).
-4(g + 1)(g + 14)**2
Let o = 10 + -14. Let x(l) = 9*l2 - 20*l + 34. Let q(n) = -4*n2 + 10*n - 16. Let b(u) = o*x(u) - 10*q(u). Find y, given that b(y) = 0.
2, 3