Let j(o) be the third derivative of o6⁄280 + o5⁄35 - 19*o4⁄56 + o3 + 607*o**2. Suppose j(v) = 0. What is v?
-7, 1, 2
Let v be ((-1488)/(-54))/8 - -2*(-30)/20. Factor 32⁄9 - 4*d + v*d**2.
4(d - 8)(d - 1)/9
Let p = -199259⁄45 + 4428. Let r(f) be the third derivative of -1⁄72*f4 - 10*f2 + 0 + 0*f3 - p*f5 + 0*f. Factor r(j).
-j*(4*j + 1)/3
Let u = -257 + 424. Let q = -164 + u. Factor 0*h + 4⁄17*h2 + 0 - 10⁄17*hq.
-2*h*2(5*h - 2)/17
Let z(d) be the third derivative of -d8⁄3528 + 11*d7⁄735 - 143*d6⁄1260 + 79*d5⁄630 + 4*d4⁄7 - 16*d3⁄9 + 1039*d**2. Determine b, given that z(b) = 0.
-1, 1, 4, 28
Let b be 9/((-1539)/(-18))*19. Determine v, given that 2⁄11*v**2 + b*v + 20⁄11 = 0.
-10, -1
Let n(u) be the third derivative of -u6⁄90 + u5⁄45 + 8*u4⁄9 - 32*u3⁄9 - 23*u**2 + 2*u. Factor n(j).
-4(j - 4)(j - 1)*(j + 4)/3
Let l(n) be the third derivative of 0*n + 1⁄60*n5 + 0 + 17⁄12*n4 + 289⁄6*n3 + 10*n2. Determine j so that l(j) = 0.
-17
Let k be (40⁄24)/((-2)/(-12)). Suppose -17*f4 - 2*f - 6*f2 + 14*f3 - 2*f - k*f5 + 27*f4 - 4*f4 = 0. Calculate f.
-1, -2⁄5, 0, 1
Let t(d) be the third derivative of -d5⁄180 - 7*d4⁄18 + 1502*d**2. Factor t(q).
-q*(q + 28)/3