Factor -10*r3 - 82*r2 - 12*r - 48*r3 + 54*r - 54*r + 12*r4.
2r(r - 6)(r + 1)(6*r + 1)
Let u(s) = 4*s - 12. Let q be u(4). Let k be (-2 - 6 - -1)*q/(-7). Factor 3*x + k*x4 - 3*x3 - 5*x4 + 3 - 5 - x2 + 4.
-(x - 1)*(x + 1)*2(x + 2)
Suppose 0 = -4*b - 3*a + 6, a + 0 = -2*b + 2. Let v be 0 + (6 - b) + -4. Solve -2⁄3 + 2⁄3*h - 1⁄6*h**v = 0 for h.
2
Let h(n) = 2985*n. Let q be h(0). Suppose 159⁄8*s3 + 3⁄2*s + q + 27⁄8*s5 + 57⁄4*s4 + 21⁄2*s2 = 0. What is s?
-2, -1, -2⁄9, 0
Solve 1440 + 5561*p - 14*p4 - 979*p3 + 115*p5 - 64*p4 - 142*p4 + 2530*p2 - 1686*p**3 + 11239*p = 0.
-3, -2⁄23, 4
Let t(b) be the second derivative of b7⁄252 - 71*b6⁄180 - 29*b5⁄24 - 73*b4⁄72 - 552*b. Factor t(f).
f2(f - 73)(f + 1)2⁄6
Factor 1⁄10*v3 + 23⁄10*v - 13⁄10*v2 - 11⁄10.
(v - 11)*(v - 1)**2⁄10
Let c(p) be the first derivative of 15*p + 20*p4 - 40⁄3*p3 - 23 - 55⁄2*p**2. Factor c(f).
5(f - 1)(4f - 1)(4*f + 3)
Find a such that 5⁄2*a4 + 505⁄2*a2 - 105⁄2*a**3 - 855⁄2*a + 225 = 0.
1, 2, 3, 15
Let z(q) be the first derivative of -q7⁄560 + q6⁄240 - q**3⁄3 + q + 46. Let a(j) be the third derivative of z(j). Factor a(b).
-3*b*2(b - 1)/2