Let i(z) be the first derivative of 2*z3⁄9 + 60*z2 - 362*z/3 - 452. Find g, given that i(g) = 0.
-181, 1
Let k(s) be the first derivative of -15*s4⁄4 - 32*s3 + 282*s**2 + 240*s + 222. Let k(a) = 0. What is a?
-10, -2⁄5, 4
Let q be (-1 + -1)*(-4 + 4 + -2). Let c(n) = n2 + 136*n + 980. Let r(i) = -i2 - i. Let l(b) = q*r(b) - c(b). Factor l(g).
-5*(g + 14)**2
Let x(o) be the second derivative of -o8⁄16800 - o7⁄630 + 11*o6⁄1800 + 37*o4⁄6 + 7*o - 3. Let c(m) be the third derivative of x(m). Factor c(f).
-2f(f - 1)*(f + 11)/5
Suppose -433200⁄7 - 3⁄7*i**2 - 2280⁄7*i = 0. Calculate i.
-380
Let y(m) = -11*m3 + 391*m2 - 2214*m + 3230. Let c(o) = -27*o3 + 978*o2 - 5535*o + 8076. Let h(p) = 5*c(p) - 12*y(p). Factor h(q).
-3(q - 60)(q - 3)**2
Let d = 348 + -412. Let x be 9⁄12*d/(-24). Factor 75⁄4*r3 + 3⁄4*r5 - 6 + 21*r - 6*r4 - 57⁄2*rx.
3*(r - 2)3*(r - 1)2⁄4
Let a(p) = 20*p2 + 363*p + 56. Let g be a(-18). Factor -10⁄3*l3 - 2*l + 14⁄3*lg + 2⁄3*l4 + 0.
2l(l - 3)*(l - 1)**2⁄3
Let v(n) be the second derivative of -n6⁄15 - n4⁄2 - 2*n3⁄3 + 2*n2 + 37*n. Let i(d) = d4 + d3 + d - 1. Let o(p) = 4*i(p) + v(p). Factor o(q).
2*q*2(q - 1)*(q + 3)
Let o© be the third derivative of -c6⁄720 - c5⁄72 + c4⁄72 + 2*c3⁄3 + 156*c**2. Factor o(q).
-(q - 2)(q + 3)(q + 4)/6