Let i(z) be the first derivative of 2*z39 + 60*z2 - 362*z/3 - 452. Find g, given that i(g) = 0.

-181, 1

Let k(s) be the first derivative of -15*s44 - 32*s3 + 282*s**2 + 240*s + 222. Let k(a) = 0. What is a?

-10, -25, 4

Let q be (-1 + -1)*(-4 + 4 + -2). Let c(n) = n2 + 136*n + 980. Let r(i) = -i2 - i. Let l(b) = q*r(b) - c(b). Factor l(g).

-5*(g + 14)**2

Let x(o) be the second derivative of -o816800 - o7630 + 11*o61800 + 37*o46 + 7*o - 3. Let c(m) be the third derivative of x(m). Factor c(f).

-2f(f - 1)*(f + 11)/5

Suppose -4332007 - 37*i**2 - 22807*i = 0. Calculate i.

-380

Let y(m) = -11*m3 + 391*m2 - 2214*m + 3230. Let c(o) = -27*o3 + 978*o2 - 5535*o + 8076. Let h(p) = 5*c(p) - 12*y(p). Factor h(q).

-3(q - 60)(q - 3)**2

Let d = 348 + -412. Let x be 912*d/(-24). Factor 754*r3 + 34*r5 - 6 + 21*r - 6*r4 - 572*rx.

3*(r - 2)3*(r - 1)24

Let a(p) = 20*p2 + 363*p + 56. Let g be a(-18). Factor -103*l3 - 2*l + 143*lg + 23*l4 + 0.

2l(l - 3)*(l - 1)**23

Let v(n) be the second derivative of -n615 - n42 - 2*n33 + 2*n2 + 37*n. Let i(d) = d4 + d3 + d - 1. Let o(p) = 4*i(p) + v(p). Factor o(q).

2*q*2(q - 1)*(q + 3)

Let o© be the third derivative of -c6720 - c572 + c472 + 2*c33 + 156*c**2. Factor o(q).

-(q - 2)(q + 3)(q + 4)/6