Let b(x) be the second derivative of x2 - 1⁄10*x5 + x + 0 - x3 + 1⁄2*x4. Suppose b(z) = 0. What is z?
1
Let a(v) = -v2 - 1332*v + 22936. Let q be a(17). Let t = 4⁄5 + -2⁄5. Determine c, given that t*c2 - 1⁄5*c + 0 - 2⁄5*c4 + 1⁄5*cq = 0.
-1, 0, 1⁄2, 1
What is y in 1⁄2*y4 + 35⁄2*y3 - 512 + 320*y + 174*y**2 = 0?
-16, -4, 1
Suppose -540 = 2*r - 5*z - 529, -2*z = 4*r - 14. Let r*x - 4⁄3 - 2⁄3*x**2 = 0. What is x?
1, 2
Let j© be the first derivative of -5⁄4*c2 + 0*c + 1⁄20*c5 + 28 + 23⁄12*c3 - 15⁄16*c4 + 1⁄24*c**6. Factor j(p).
p(p - 2)(p - 1)*2(p + 5)/4
Let t(l) be the second derivative of 10⁄3*l2 + 2 + 1⁄12*l5 - 5⁄12*l4 + 0*l3 + 71*l. Factor t(q).
5*(q - 2)*2(q + 1)/3
Let u(m) be the first derivative of -133*m3⁄6 + 131*m2⁄4 + m - 1466. Solve u(s) = 0 for s.
-2⁄133, 1
Suppose 7*x + x = 3*x. Suppose x = 3*z + 4*w - 9, 5*z - 15 = 2*w - 0. Solve 0 + 21⁄5*l5 + 6⁄5*l4 - 12⁄5*l - 63⁄5*lz - 12*l2 = 0 for l.
-1, -2⁄7, 0, 2
Let i = -94 - -97. Factor -k - 32*k2 + 5*k + 324*ki - 40*k**2.
4k(9*k - 1)**2
Let t(h) = h4 - h2 - 2*h + 1. Let d® = -2*r5 - 22*r4 - 28*r3 + 4*r2 + 46*r + 10. Let y(w) = -d(w) - 8*t(w). What is f in y(f) = 0?
-3, -1, 1