Let g be (-2088)/(-4060)*((-4)/(-22) - (-460)/11). Solve 64⁄5 + g*j2 - 4⁄5*j4 - 152⁄5*j - 16⁄5*j**3 = 0 for j.
-8, 1, 2
Let c(z) be the second derivative of 1⁄7*z2 - 1⁄21*z4 + 1⁄21*z3 + 1⁄147*z7 - 1⁄35*z5 + 0 + 72*z + 1⁄105*z6. Factor c(l).
2*(l - 1)2*(l + 1)3⁄7
Let g® = 3*r2 + 11*r - 12. Let x(b) be the first derivative of -5*b3⁄3 - 21*b**2⁄2 + 24*b - 29. Let o© = -14*g© - 6*x©. Factor o(j).
-4(j + 3)(3*j - 2)
Let v(b) be the second derivative of 0 + 2*b3 - 6*b2 + 26*b - 3⁄20*b5 + 1⁄4*b4. Suppose v(n) = 0. What is n?
-2, 1, 2
Let y be (11⁄2 + -3)*20⁄25. Factor 12 - 7 - 64*n - 8*n3 + 23 + 44*ny.
-4*(n - 1)*2(2*n - 7)
Let s = -96 - -99. Suppose -b + 5*bs + 14*b2 - 3*b - b3 + 0*b3 - 14*b**4 = 0. What is b?
-1, 0, 2⁄7, 1
Let j = 3389⁄2995 + 41⁄599. Let j*k**2 - 14⁄5*k + 4⁄5 = 0. What is k?
1⁄3, 2
Let g© be the third derivative of -c5⁄210 - c4⁄28 + 10*c3⁄3 + 427*c2 + c. Determine t, given that g(t) = 0.
-10, 7
Let h be (352⁄33 + -11)/((-2)/12). Let b(i) be the first derivative of -1⁄8*ih + 0*i + 5 - 1⁄16*i4 - 1⁄6*i**3. Determine f so that b(f) = 0.
-1, 0
Let g(m) be the third derivative of -11*m6⁄40 - 136*m5⁄5 - 6575*m4⁄8 + 1875*m3 - 409*m**2. Factor g(x).
-3*(x + 25)*2(11*x - 6)