Factor 184⁄5*k + 2⁄15*k**2 + 110⁄3.
2(k + 1)(k + 275)/15
Let t(a) = 77*a + 539. Let z be t(-7). Let r(n) be the first derivative of 4⁄5*n5 + 0*n2 + 0*n3 + z*n - 3*n4 - 18. Factor r(j).
4*j*3(j - 3)
Let m(k) be the second derivative of -32⁄3*k3 + 32*k2 + 0 + 0*k4 + 4⁄5*k5 - 2⁄15*k**6 - 75*k. Factor m(l).
-4*(l - 2)*3(l + 2)
Suppose -3*s - 12 = 27*y - 30*y, -4*s - 4*y + 32 = 0. Factor 4*u - 2⁄3*u**s + 14⁄3.
-2(u - 7)(u + 1)/3
Let p(u) be the third derivative of 8*u7⁄385 + 509*u6⁄330 + 2201*u5⁄66 + 371*u4⁄11 + 147*u3⁄11 - 36*u2 + 11*u. Suppose p(x) = 0. What is x?
-21, -1⁄4, -1⁄6
Let m(j) be the second derivative of -j6⁄6 - 9*j5⁄4 - 25*j4⁄3 - 10*j3 + 307*j. Suppose m(x) = 0. What is x?
-6, -2, -1, 0
Let g be (-24)/(-14) - 2*6/(-42). Suppose -36 + 40*w + 7 + g + 2*w**2 - 15 = 0. What is w?
-21, 1
Let d(n) = n2 - 2n - 23. Let k be d(6). Let p be (-3)/90-5*(1 + k). Determine j so that p*j2 - j + 0 = 0.
0, 3
Let u(s) be the second derivative of 0 - 5⁄3*s3 + 4*s2 + 1⁄6*s**4 + 26*s. Find a such that u(a) = 0.
1, 4
Suppose o = -3*o + 152. Suppose 2*m - 36 = -3*b, -3*b = -5*m + 10 + o. Find j, given that 11*j2 + 15*j + m - 11*j2 + 3*j**2 = 0.
-4, -1