Let v be (-5)/((-210)/12)*7⁄1. What is h in 10 - 2*h3 - 37*h2 + 27*h**v + h + h = 0?
-5, -1, 1
Suppose -m - 4*o = -264, 165 + 587 = 3*m + 4*o. Let r = 244 - m. Factor r*s + 4⁄3*s2 + 0 - 14⁄3*s3 + 10⁄3*s**4.
2*s*2(s - 1)*(5*s - 2)/3
Let y(l) = l2 + l + 1. Let d(h) = -4*h2 - 17*h + 15. Let i(g) = d(g) + 5*y(g). Let c be i(10). Factor 1⁄4*o2 + 3⁄4*o - 3⁄4*o3 + c - 1⁄4*o**4.
-o(o - 1)(o + 1)*(o + 3)/4
Suppose -49*m = -38*m. Let x(u) be the second derivative of -13*u + m - 3*u5 - 4⁄15*u6 + 16⁄3*u4 + 0*u2 - 8⁄3*u3 + 10⁄21*u7. Solve x(l) = 0.
-2, 0, 2⁄5, 1
Let p be (-203)/((-6)/30*-5*1). Let b = -201 - p. Find g such that -1⁄2*g + 0 + 9⁄4*g3 - 7⁄4*g5 + 5⁄4*gb - 5⁄4*g4 = 0.
-1, 0, 2⁄7, 1
Let f(b) be the second derivative of b7⁄168 - b6⁄40 - 9*b5⁄10 + 27*b4⁄4 - 510*b. Solve f(d) = 0 for d.
-9, 0, 6
Let n be (0 - 0)/((-9)/(90⁄10)). Let l® be the second derivative of 0*r5 + 0*r2 + n*r3 - 1⁄6*r6 + 0 + r + 5⁄12*r**4. Find s, given that l(s) = 0.
-1, 0, 1
Let b be 13*(3/(-3) - 10). Let f be 4 + (-100)/26 - 56/b. Solve -f*u**2 + 0*u + 6⁄11 = 0.
-1, 1
Let v(f) be the first derivative of -1 - 1⁄6*f4 + 18*f + 0*f2 - 1⁄3*f**3. Let a(s) be the first derivative of v(s). Factor a®.
-2r(r + 1)
Let s(z) = 10*z + 108. Let y be s(-11). Let o be (-7 - -8)/((-5)/y). Solve -2⁄5*k - 4⁄5*k2 + 4⁄5*k3 + 2⁄5*k4 - o*k5 + 2⁄5 = 0.
-1, 1