Let b(s) = -s3 - 37*s2 - 33*s + 45. Let x be b(-36). Let n be 657⁄945 - (-6)/x. Factor -1⁄5*g2 - n*g4 + 3⁄5*g3 + 0*g + 0 + 1⁄5*g5.
g2*(g - 1)3⁄5
Suppose 1800⁄7*w2 + 16⁄7*w3 + 2673⁄7*w + 999⁄7 = 0. Calculate w.
-111, -3⁄4
Let n be ((-12)/(-28))/((-84)/(-147)) - 13⁄28. Solve -n*w5 + 0 + 2⁄7*w3 + 0*w2 + 0*w + 0*w4 = 0 for w.
-1, 0, 1
Let v(x) = 131*x2 + x4 - 2 - 3*x + x3 - 131*x2. Let c(f) = f**3 + f + 1. Let g(y) = -5*c(y) - 5*v(y). Factor g(o).
-5(o - 1)(o + 1)**3
Let h(f) = -49*f + 1617. Let s be h(33). Suppose 3*n - 6 = -q + 5, -5*n - 4*q + 9 = 0. Factor 1⁄3*m3 - 1⁄3*m2 + 1⁄3*m4 - 1⁄3*mn + s + 0*m.
-m2*(m - 1)2*(m + 1)/3
Let l(d) = 105*d3 + 208*d2 + 93*d - 6. Suppose 42 = 7*b + 70. Let f(v) = 105*v3 + 209*v2 + 93*v - 6. Let s(h) = b*f(h) + 5*l(h). Factor s(w).
3*(w + 1)*2(35*w - 2)
Let c(w) be the second derivative of -2*w6⁄15 - w5⁄5 + 10*w4 + 48*w3 - 746*w. Factor c(s).
-4s(s - 6)(s + 3)(s + 4)
Let m = -4⁄1881 + 1889⁄3762. Let i(t) be the third derivative of -m*t4 - 1⁄20*t5 - 4*t2 - 1⁄480*t6 - 8⁄3*t**3 + 0*t + 0. Factor i(f).
-(f + 4)**3⁄4
Let l(p) be the first derivative of -2*p4⁄3 + 7*p3⁄9 + 17*p**2⁄6 + 2*p/3 + 1018. Factor l(b).
-(b - 2)(b + 1)(8*b + 1)/3
Suppose 30 = 3*m - 9*f + 11*f, -5*f = -5m + 75. Let x be 10/m(-81)/360*-8. What is n in -3⁄2 - x*n**2 - 3*n = 0?
-1