Let g(v) = 9*v4 - 42*v3 + 173*v2 - 196*v + 76. Let k(x) = -125*x4 + 590*x3 - 2420*x2 + 2745*x - 1065. Let f(b) = -55*g(b) - 4*k(b). Factor f(w).
5*(w - 4)2*(w - 1)2
Let k = 46158 - 46155. Find j such that 0 + 8⁄3*jk + 0*j2 + 28⁄3*j4 + 0*j + 4*j5 = 0.
-2, -1⁄3, 0
Let u(p) be the first derivative of 4*p5⁄5 - 168*p4 + 668*p**3⁄3 - 1132. Factor u(f).
4*f*2(f - 167)*(f - 1)
Let j = 6607932⁄492079 - 2⁄70297. Suppose -8⁄7*k3 + j*k2 + 128⁄7*k + 26⁄7 = 0. What is k?
-1, -1⁄4, 13
Let t(p) be the first derivative of 2*p5⁄85 - 45*p4⁄34 + 208*p3⁄17 - 592*p2⁄17 + 1376. Let t(f) = 0. What is f?
0, 4, 37
Let b(w) be the first derivative of w7⁄42 - 5*w6⁄24 + w5⁄3 + 4*w2 - 2*w + 45. Let n(o) be the second derivative of b(o). Determine l so that n(l) = 0.
0, 1, 4
Let p = 8⁄3 + 4. Let u(w) be the second derivative of -p*w3 + 50*w2 + 1⁄3*w**4 + 0 + 9*w. Suppose u(i) = 0. What is i?
5
Let b(g) be the first derivative of 24⁄25*g5 + 7⁄20*g4 + 0*g - 2⁄5*g2 + 62 - 4⁄5*g3 + 3⁄10*g**6. Suppose b(z) = 0. Calculate z.
-2, -1, -1⁄3, 0, 2⁄3
Let j(h) be the second derivative of -h5⁄130 - 35*h4⁄26 + 106*h**3⁄39 - 37*h. Factor j(d).
-2d(d - 1)*(d + 106)/13
Let l = 253 - 367. Let k = l + 118. Determine o, given that 2⁄3*o5 - 4⁄3 + 8⁄3*o2 + 2⁄3*o - 4⁄3*ok - 4⁄3*o3 = 0.
-1, 1, 2