Let w(b) be the first derivative of -2*b6⁄3 - 532*b5⁄5 - 132*b**4 - 1108. Find o such that w(o) = 0.
-132, -1, 0
Let h be (-5124)/(-1764) - (-5 - (-412)/84). Factor 4⁄7*k2 + 10⁄7*k5 + 0*k + 2⁄7*kh - 16⁄7*k4 + 0.
2*k2*(k - 1)2*(5*k + 2)/7
Let g(l) be the third derivative of -27 + 0*l + 8⁄21*l3 + 1⁄14*l4 + 1⁄210*l5 - 2*l2. Find u such that g(u) = 0.
-4, -2
Let c(u) be the second derivative of u6⁄135 + 11*u5⁄90 + 11*u4⁄18 + u3⁄3 - 6*u**2 + 1517*u. Factor c(j).
2(j - 1)(j + 3)*2(j + 6)/9
Let c(f) be the first derivative of 4⁄21*f3 + 0*f - 1⁄210*f5 + 0*f4 - 14 + 5*f2. Let l(m) be the second derivative of c(m). Solve l(x) = 0.
-2, 2
Let p = -18 - -23. Suppose -2*i + o - 6 = -4*i, -i = -p*o + 8. Let -3⁄5*z + 0 + 6⁄5*zi - 3⁄5*z3 = 0. Calculate z.
0, 1
Let j be (-232)/(-5) - 30/(-50). Let u = j + -45. Suppose 9*p + 2*p + p - 8*pu - 4*p3 = 0. Calculate p.
-3, 0, 1
Let p(y) = 10*y2 + 4. Let z be p(2). Let d = z + -307⁄7. Factor -d*i + 2⁄7*i2 + 0 - 1⁄7*i**3.
-i*(i - 1)**2⁄7
Let m(z) be the third derivative of z7⁄1680 + z6⁄180 - z5⁄240 - z4⁄12 - 14*z3⁄3 + 73*z2. Let v(q) be the first derivative of m(q). Factor v(w).
(w - 1)(w + 1)(w + 4)/2
Let 2⁄17*r4 + 58⁄17*r - 10⁄17*r3 + 84⁄17 - 38⁄17*r**2 = 0. What is r?
-3, -1, 2, 7