Let w(t) = -106*t + 534. Let c be w(5). Let d(i) be the first derivative of 9 + 0*i - 6⁄7*i3 + 6⁄7*ic - 2⁄7*i5 + 2⁄7*i2. Determine n so that d(n) = 0.
0, 2⁄5, 1
Find v, given that 21⁄10*v + 0 + 1⁄10*v**2 = 0.
-21, 0
Let o(l) be the third derivative of -l7⁄42 - 2*l6⁄3 - 41*l5⁄12 - 65*l4⁄12 - 4*l**2 + 66*l. Factor o(w).
-5w(w + 1)(w + 2)(w + 13)
Let p(t) be the second derivative of -t7⁄399 - 16*t6⁄285 - 27*t5⁄190 + 8*t4⁄57 + 28*t**3⁄57 - 5*t - 41. Solve p(n) = 0.
-14, -2, -1, 0, 1
Let p = 802 - 1595⁄2. Let i(j) be the first derivative of -12*j + 9 + j3 + p*j2. Suppose i(o) = 0. Calculate o.
-4, 1
What is w in -11228*w2 + 5615*w2 + 5616*w**2 + 264*w = 0?
-88, 0
Suppose s - 5*s - 91 = -3*l, 2*l - 84 = -2*s. Factor 80*c2 - 12 - 38*c2 - 28*c - l*c**2.
(c - 6)*(5*c + 2)
Let g(x) = -7*x - 19. Let t(o) = 30*o + 75. Let l(w) = 15*g(w) + 4*t(w). Let z be l(-1). Factor -1⁄3*j5 + z*j + 0*j2 + 0 + 0*j4 + 1⁄3*j3.
-j*3(j - 1)*(j + 1)/3
Let v(s) be the second derivative of 3⁄4*s3 + 2*s2 + 20*s + 1⁄24*s**4 + 2. Factor v(q).
(q + 1)*(q + 8)/2
Let i = 45177 + -45175. Factor -2 + 2⁄3*u4 - 8⁄3*u + 8⁄3*u3 + 4⁄3*u**i.
2(u - 1)(u + 1)*2(u + 3)/3