Let o(f) be the third derivative of f5⁄30 - 3*f4⁄2 + 24*f3 - 1246*f2 + 2. What is c in o© = 0?
6, 12
Let t(j) = 3*j2 - 3*j - 22. Let q be 34⁄8 - ((-124)/16 - -8). Let d(h) = 15*h2 - 15*h - 111. Let v(y) = q*d(y) - 21*t(y). Factor v(i).
-3(i - 3)(i + 2)
Let k(i) be the first derivative of -i6⁄48 - 3*i5⁄10 - 25*i4⁄16 - 11*i3⁄3 - 69*i**2⁄16 - 5*i/2 + 162. Factor k(y).
-(y + 1)*3(y + 4)*(y + 5)/8
Let u(d) = 2*d4 + 2*d3 - 22*d2 + 36*d - 14. Let m = -119 + 116. Let f(o) = -o4 - 3*o3 + 21*o2 - 38*o + 15. Let x(k) = m*u(k) - 2*f(k). Factor x(z).
-4*(z - 1)*3(z + 3)
Let y = 277⁄1124 - -1⁄281. Let o(l) be the first derivative of -1⁄6*l3 + y*l2 - 14 + 1⁄2*l - 1⁄8*l**4. Find t such that o(t) = 0.
-1, 1
Let o be (0 - 2) + 0 + (-38)/7 - -8. Factor -2⁄7*g + 0 - 2⁄7*g3 - o*g2.
-2g(g + 1)**2⁄7
Determine v, given that -110*v - 15*v2 + 168 - 48 + 1689274*v3 - 1689269*v**3 = 0.
-4, 1, 6
Let d be -7 + 4 + 1 + 5. Suppose p + 8 = 2*l, l = -4*p - 16 + 2. Solve -1⁄7 - 3⁄7*xl + 1⁄7*xd + 3⁄7*x = 0 for x.
1
Let u(g) = g2 - 57*g + 110. Let y be u(2). Let j(a) be the second derivative of 0 + 0*a3 - 2⁄15*a6 - 1⁄4*a5 - 2*a + y*a2 - 1⁄12*a4. Factor j(n).
-n*2(n + 1)*(4*n + 1)
Suppose 74*g + 32 - 218 = -19*g. Find y, given that 2*y + 4⁄3 - 2⁄3*y4 - 2⁄3*yg - 2*y**3 = 0.
-2, -1, 1