Suppose 3*w + 19*w - 109 = 111. Let a(p) be the first derivative of 9 + 35⁄3*p3 - 45⁄2*p2 + w*p. Determine t, given that a(t) = 0.
2⁄7, 1
Let c(u) be the second derivative of -u5⁄60 + 8*u4⁄3 + 1591*u. Factor c(w).
-w*2(w - 96)/3
Let q(s) be the third derivative of 1⁄8*s4 + 0 + 0*s3 - 7*s + 5*s2 - 1⁄80*s5. Factor q(o).
-3o(o - 4)/4
Let t(o) be the third derivative of -2*o2 - 1⁄105*o7 - 1⁄3*o4 + 1⁄20*o6 + 0 + 0*o5 + 0*o3 + 3*o. What is m in t(m) = 0?
-1, 0, 2
Let q(j) be the first derivative of -j4⁄30 + 26*j3⁄9 + 133*j**2⁄15 + 134*j/15 + 1274. Factor q(m).
-2(m - 67)(m + 1)**2⁄15
Let z(b) be the first derivative of 5*b5 + 155*b4⁄4 + 38*b3 - 86*b2 + 40*b + 513. Factor z(f).
(f + 2)(f + 5)(5*f - 2)**2
Factor 1⁄6*n**2 - 17 + 49⁄6*n.
(n - 2)*(n + 51)/6
Factor -20*t**2 + 42*t + 30*t + 740 - 11*t + 24*t + 20*t.
-5(t + 4)(4*t - 37)
Let u(a) be the third derivative of 43*a5⁄10 - 23*a4⁄3 + 4*a3⁄3 - a2 + 684*a. Factor u(p).
2*(3p - 2)(43*p - 2)
Let x be 6⁄1639/(-18)(-16)/52. Let c(a) be the second derivative of 1⁄2*a3 + 0 - x*a4 + 0*a**2 + 18*a. Factor c(i).
-3i(i - 1)