Let s(h) = h3 + 7. Let g be s(0). Let f = 10 - g. Determine j so that 293*j2 - j - 2*jf + j - 297*j2 = 0.
-2, 0
Find a, given that 28*a + 46*a2 + 105 - 329 + 76*a + 4*a3 + 78*a2 - 8*a2 = 0.
-28, -2, 1
Let o(m) be the first derivative of -29*m5⁄20 + 11*m4⁄2 - 15*m3⁄2 + 4*m2 - m/4 + 126. Factor o(x).
-(x - 1)*3(29*x - 1)/4
Let q(k) = 6*k5 + 71*k4 + 115*k3 + 34*k2 - 243*k. Let b(y) = -2*y5 - 24*y4 - 38*y3 - 12*y2 + 82*y. Let o(u) = 17*b(u) + 6*q(u). Factor o(m).
2m(m - 1)(m + 2)(m + 4)**2
Let w(f) = f3 - 8*f2 + 2*f - 14. Let m be w(8). Factor 2808*om + 4*o3 + 22*o - 2832*o2 + 2*o4 + 0*o**3 + 54 - 58*o.
2(o - 3)(o - 1)*(o + 3)**2
Let m(x) be the first derivative of -1⁄4*x2 - 1⁄2*x3 + 59 + 0*x. Factor m(j).
-j*(3*j + 1)/2
Let i = 56371⁄2720 - 352⁄17. Let m(k) be the second derivative of -12*k + 0*k2 + 0*k4 - i*k5 + 0 + 1⁄16*k3. Find s, given that m(s) = 0.
-1, 0, 1
Let l = 12854⁄35 - 2218⁄7. Solve l*y**2 + 44⁄5*y - 8⁄5 = 0 for y.
-2⁄7, 1⁄9
Let n(h) = 5*h2 + 138. Let u(s) = 13*s2 - 2*s + 413. Let t(i) = 8*n(i) - 3*u(i). Factor t(x).
(x - 9)*(x + 15)
Let j(v) = -37*v + 42. Let t be j(1). Let d be (9/t)/((-66)/(-110)). Factor 0 - 5⁄2*gd + 3⁄2*g2 + 1⁄2*g**4 + 9⁄2*g.
g*(g - 3)*2(g + 1)/2