Let l(f) be the second derivative of f7⁄735 + f6⁄140 + f5⁄105 - 23*f2 + 25*f. Let d(p) be the first derivative of l(p). Suppose d(g) = 0. Calculate g.
-2, -1, 0
Solve 1778*l3 - 3865*l + 2903 + 1940*l2 - 973 - 3559*l3 + 1776*l3 = 0 for l.
1, 386
Let n(f) = -2*f2 + 2*f + 28. Let q(s) = 4*s2 - 4*s - 57. Let j be -3*16/(-6) + (18 - 22). Let a(i) = j*q(i) + 9*n(i). Factor a(t).
-2(t - 4)(t + 3)
Let y be ((-476)/(-42) + -13)*(-9)/60. Suppose -y*u4 + 10*u + 5⁄2*u3 - 4 - 33⁄4*u**2 = 0. Calculate u.
1, 4
Let n(m) be the second derivative of -11*m6⁄75 - m5⁄50 + 22*m4⁄15 + 4*m3⁄15 + 21*m. Suppose n(h) = 0. What is h?
-2, -1⁄11, 0, 2
Let y = 7706⁄4277 + -228⁄611. Factor 2⁄7*s3 - 4⁄7 - y*s + 2⁄7*s4 - 6⁄7*s**2.
2(s - 2)(s + 1)**3⁄7
Let y® = -2*r - 14. Let a be y(-10). Let m be (-1*8/a)/((-12)/72). Factor -3*x + m*x4 - 3*x + 13*x2 - 20*x3 + 2*x + 3*x2.
4x(x - 1)*2(2*x - 1)
Let h(j) be the third derivative of -j7⁄2310 + j6⁄660 + j5⁄220 - j4⁄66 - 2*j3⁄33 + 1368*j2. Factor h(s).
-(s - 2)2*(s + 1)2⁄11
Let j® be the third derivative of r5⁄4 + 5*r4⁄2 + 21*r2. Let c(p) = 6*p + 5 - 3*p2 - 5 - 18*p. Let b(w) = 21*c(w) + 4*j(w). Solve b(o) = 0 for o.
-4, 0
Let h(f) = 8*f4 - 1614*f3 + 484814*f2 - 64964808*f + 3264481600. Let s(u) = -3*u4 + 3*u3 - u2 + 1. Let v(p) = -h(p) - 2*s(p). What is q in v(q) = 0?
201