Let l(f) be the second derivative of f7735 + f6140 + f5105 - 23*f2 + 25*f. Let d(p) be the first derivative of l(p). Suppose d(g) = 0. Calculate g.

-2, -1, 0

Solve 1778*l3 - 3865*l + 2903 + 1940*l2 - 973 - 3559*l3 + 1776*l3 = 0 for l.

1, 386

Let n(f) = -2*f2 + 2*f + 28. Let q(s) = 4*s2 - 4*s - 57. Let j be -3*16/(-6) + (18 - 22). Let a(i) = j*q(i) + 9*n(i). Factor a(t).

-2(t - 4)(t + 3)

Let y be ((-476)/(-42) + -13)*(-9)/60. Suppose -y*u4 + 10*u + 52*u3 - 4 - 334*u**2 = 0. Calculate u.

1, 4

Let n(m) be the second derivative of -11*m675 - m550 + 22*m415 + 4*m315 + 21*m. Suppose n(h) = 0. What is h?

-2, -111, 0, 2

Let y = 77064277 + -228611. Factor 27*s3 - 47 - y*s + 27*s4 - 67*s**2.

2(s - 2)(s + 1)**37

Let y® = -2*r - 14. Let a be y(-10). Let m be (-1*8/a)/((-12)/72). Factor -3*x + m*x4 - 3*x + 13*x2 - 20*x3 + 2*x + 3*x2.

4x(x - 1)*2(2*x - 1)

Let h(j) be the third derivative of -j72310 + j6660 + j5220 - j466 - 2*j333 + 1368*j2. Factor h(s).

-(s - 2)2*(s + 1)211

Let j® be the third derivative of r54 + 5*r42 + 21*r2. Let c(p) = 6*p + 5 - 3*p2 - 5 - 18*p. Let b(w) = 21*c(w) + 4*j(w). Solve b(o) = 0 for o.

-4, 0

Let h(f) = 8*f4 - 1614*f3 + 484814*f2 - 64964808*f + 3264481600. Let s(u) = -3*u4 + 3*u3 - u2 + 1. Let v(p) = -h(p) - 2*s(p). What is q in v(q) = 0?

201