Let p = 13 - -93. Suppose 3*g = -t + 65, 3*t + t = -5*g + p. Factor -g + 2*x2 + 24 - 3*x - x2 + 4*x3 - 3*x2 - x**5.

-(x - 1)*3(x + 1)*(x + 2)

Let t(w) be the first derivative of w33 + 3*w2 - 6*w - 10. Let i be t(-8). Factor -7 + 11*a2 + 4*a2 + i*a**3 + 7.

5*a*2(2*a + 3)

Let o(m) be the first derivative of m620 + m58 - m46 - m33 + 34*m + 7. Let f(z) be the first derivative of o(z). Let f(h) = 0. Calculate h.

-2, -23, 0, 1

Suppose -3*h + 769 = 2*p, 2*p + 16*h - 17*h = 789. Factor 84*m2 + 27*m4 + p*m + 8*m**3 + 686.

2*(m + 7)**47

Let v be ((-18420)/(-10))/((-15)/2). Let f = -244 - v. Suppose f - 445*g**2 + 365*g = 0. What is g?

-211, 1

Factor 2085*w - 15*w**2 + 2095.

-(w - 209)*(w + 1)/5

Suppose -s - 126 = 5*h - 166, -2*s - 11 = -3*h. Let u(i) be the first derivative of -16*i + 443*i3 - h - 40*i2. Factor u(n).

4(n - 2)(11*n + 2)

Let b(d) = -6 + 0*d2 - 11*d2 - 6 - 4*d + 2*d3. Let k be b(6). Factor 0*m + 0*m3 - 34*m4 + 34*m5 + 0 + k*m**2.

3*m*4(m - 1)/4

Let y(z) be the second derivative of -z460 - 43*z33 - 429*z**210 - 1296*z. Solve y(x) = 0.

-429, -1

Let w(z) be the first derivative of z627 - 8*z515 + z418 + 68*z39 + 88*z**29 - 1542. What is a in w(a) = 0?

-2, -1, 0, 4, 11