Let p = 13 - -93. Suppose 3*g = -t + 65, 3*t + t = -5*g + p. Factor -g + 2*x2 + 24 - 3*x - x2 + 4*x3 - 3*x2 - x**5.
-(x - 1)*3(x + 1)*(x + 2)
Let t(w) be the first derivative of w3⁄3 + 3*w2 - 6*w - 10. Let i be t(-8). Factor -7 + 11*a2 + 4*a2 + i*a**3 + 7.
5*a*2(2*a + 3)
Let o(m) be the first derivative of m6⁄20 + m5⁄8 - m4⁄6 - m3⁄3 + 34*m + 7. Let f(z) be the first derivative of o(z). Let f(h) = 0. Calculate h.
-2, -2⁄3, 0, 1
Suppose -3*h + 769 = 2*p, 2*p + 16*h - 17*h = 789. Factor 84*m2 + 2⁄7*m4 + p*m + 8*m**3 + 686.
2*(m + 7)**4⁄7
Let v be ((-18420)/(-10))/((-15)/2). Let f = -244 - v. Suppose f - 44⁄5*g**2 + 36⁄5*g = 0. What is g?
-2⁄11, 1
Factor 208⁄5*w - 1⁄5*w**2 + 209⁄5.
-(w - 209)*(w + 1)/5
Suppose -s - 126 = 5*h - 166, -2*s - 11 = -3*h. Let u(i) be the first derivative of -16*i + 44⁄3*i3 - h - 40*i2. Factor u(n).
4(n - 2)(11*n + 2)
Let b(d) = -6 + 0*d2 - 11*d2 - 6 - 4*d + 2*d3. Let k be b(6). Factor 0*m + 0*m3 - 3⁄4*m4 + 3⁄4*m5 + 0 + k*m**2.
3*m*4(m - 1)/4
Let y(z) be the second derivative of -z4⁄60 - 43*z3⁄3 - 429*z**2⁄10 - 1296*z. Solve y(x) = 0.
-429, -1
Let w(z) be the first derivative of z6⁄27 - 8*z5⁄15 + z4⁄18 + 68*z3⁄9 + 88*z**2⁄9 - 1542. What is a in w(a) = 0?
-2, -1, 0, 4, 11