Let f(i) = 33*i + 200. Let q be f(-6). Let b© be the second derivative of 1⁄6*c4 - 2*cq + 1⁄3*c**3 + 0 - 16*c. Suppose b(j) = 0. What is j?
-2, 1
Let f be 39*(-15)/(-26) - 18. Factor f - 21*l + 27⁄8*l**2.
3(l - 6)(9*l - 2)/8
Let y(i) = 11*i2 + 14*i - 23. Let w be y(3). Let q = w - 229⁄2. Factor 19⁄2*j - q*j2 + 3.
-(j - 3)*(7*j + 2)/2
Let i® be the third derivative of -r6⁄30 + 19*r5⁄15 + 32*r4⁄3 + 88*r3⁄3 + 1426*r**2. Factor i(f).
-4(f - 22)(f + 1)*(f + 2)
Let b(t) be the third derivative of -t8⁄1344 - t7⁄252 + t6⁄48 + t4⁄8 - 5*t3⁄2 + 4*t2 - 8*t. Let u(k) be the second derivative of b(k). Factor u(m).
-5m(m - 1)*(m + 3)
Let l(s) = 11*s2 - 4*s + 6. Let r(z) = 10*z2 - 5*z + 5. Let x© = 3*l© - 2*r©. Let g be x(4). Factor 2*h + g*h3 - 2*h2 + 4 - 210*h3 - 2*h2.
-2(h - 1)(h + 1)*(h + 2)
Let m = 245⁄529 - 1147⁄4761. Find o, given that m*o5 + 80⁄9*o3 - 64⁄9 - 20⁄9*o4 + 160⁄9*o - 160⁄9*o2 = 0.
2
Suppose l = 5*u + 3*l - 21, -2*l + 9 = u. Factor -44*x3 - 25*x2 + 124*x3 - 40*x3 - 45*x**u + 30*x.
-5x(x - 1)*(x + 6)
Let l = 59⁄10 + 147⁄20. Let a(n) be the second derivative of 0 + 0*n2 - 6*n - l*n5 - 5⁄3*n4 + 10⁄3*n3 - 15⁄2*n**6. Let a® = 0. Calculate r.
-1, -2⁄5, 0, 2⁄9
Let w(p) be the third derivative of 7*p5⁄5 + 316*p4⁄3 + 40*p3 + 28*p2 + 12*p. Factor w©.
4(c + 30)(21*c + 2)