Let f(p) = p2 - 3227*p + 649636. Let a® = -4*r2 + 9680*r - 1948908. Let k(d) = 3*a(d) + 8*f(d). Solve k(o) = 0.
403
Let v(s) = -35*s2 - 3857*s + 700. Let i(q) = -246*q2 - 27000*q + 4899. Let c(t) = -2*i(t) + 15*v(t). Factor c(j).
-3(j + 117)(11*j - 2)
Solve 169*i2 - 60*i3 - 214*i2 + 0*i4 - 405 - 10*i4 - 225*i2 - 540*i + 5*i**4 = 0.
-3
Let b(x) be the first derivative of 3*x5⁄5 + 165*x4⁄4 + 726*x3 - 1344*x2 - 4704*x + 460. Find i, given that b(i) = 0.
-28, -1, 2
Let h(x) be the first derivative of -x4⁄16 - 83*x3⁄12 - 10*x**2 + 41*x + 148. Factor h(f).
-(f - 1)(f + 2)(f + 82)/4
Let k(u) be the first derivative of 24*u4⁄7 - 190*u3⁄21 - 2*u**2⁄7 - 786. Factor k®.
2r(r - 2)*(48*r + 1)/7
Let h(k) = 2*k2. Let f(x) = -6*x - 42. Let z be f(-8). Let j(t) = -13*t2 + 4. Let d(b) = z*h(b) + j(b). Factor d(o).
-(o - 2)*(o + 2)
Let j = 47 - 47. Suppose j = -2*f + 3 + 1. Factor 5*a4 - 6*a2 - 25*a3 + 18*a2 + 3*af + 25*a2 - 20*a.
5a(a - 2)*2(a - 1)
Let p(v) be the third derivative of v5⁄40 - 11*v4⁄8 - 42*v3 - 218*v2. Factor p(i).
3(i - 28)(i + 6)/2
Let y(z) = -2*z3 + 16*z2 - 9*z - 13. Let i be y(-15). Let c = i + -20539⁄2. Factor 165*d3 + 5⁄2*d5 + 65⁄2*d4 + c + 405*d2 + 945⁄2*d.
5(d + 1)(d + 3)**4⁄2