Let i be -16 - 17110/(-1239) - 3/(9/(-7)). Determine f, given that -i*f**2 + 6⁄7*f + 0 = 0.
0, 6
Suppose 7743*t + 48 = 7759*t. Let n(d) be the first derivative of -1⁄3*d3 + 1⁄2*d2 + t + 0*d. Factor n(x).
-x*(x - 1)
Factor -465⁄4*m4 + 1⁄4*m5 - 3723875⁄4*m2 + 0*m + 0 + 72075⁄4*m3.
m2*(m - 155)3⁄4
Let j(l) be the first derivative of -l4⁄20 + 47*l3⁄3 - 467*l**2⁄10 + 233*l/5 + 17. What is w in j(w) = 0?
1, 233
Let q(t) be the second derivative of 4*t7⁄21 - 22*t6⁄15 - t5 + 56*t4⁄3 + 32*t**3 + 1626*t. Suppose q(a) = 0. What is a?
-3⁄2, -1, 0, 4
Let l(y) = -40*y2 - 186*y + 160. Let q(x) = -7*x2 - 2*x - 2. Let r(h) = l(h) - 6*q(h). Factor r(j).
2(j - 86)(j - 1)
Let p® = -3*r2 + 141*r - 142. Let j(q) = -12*q2 + 561*q - 567. Let d(x) = -2*j(x) + 9*p(x). Factor d(w).
-3(w - 48)(w - 1)
Let b(p) be the second derivative of -p7⁄840 - 7*p6⁄120 + 3*p5⁄8 - 11*p4⁄2 + 32*p. Let y(u) be the third derivative of b(u). Factor y(t).
-3(t - 1)(t + 15)
Let 68 - 2⁄5*n**2 + 14⁄5*n = 0. What is n?
-10, 17
Let m(l) be the third derivative of 841*l6⁄30 - 928*l5⁄15 + 119*l4⁄8 - 3*l3⁄2 + 258*l**2. Factor m®.
(r - 1)*(58*r - 3)**2