Let n be 504⁄264 + 1⁄11. Let l(x) be the third derivative of 0*x4 + 1⁄15*x5 + 0*x3 + 2⁄105*x7 + 0*x + xn - 1⁄15*x6 + 0. Factor l(h).
4*h2*(h - 1)2
Suppose 2*a + f - 13 + 20 = 0, 0 = -4*a + 4*f + 28. Factor 3*g3 - 7⁄2*g2 + 1⁄2*g**4 + 0 + a*g.
g*2(g - 1)*(g + 7)/2
Let v(w) be the third derivative of -w7⁄1890 + w6⁄135 - 16*w4⁄27 + 41*w3⁄6 + 5*w**2. Let m(y) be the first derivative of v(y). Factor m(h).
-4*(h - 4)*2(h + 2)/9
Let v = -24646 - -73939⁄3. Suppose v*q**2 + 4⁄3 - 4⁄3*q = 0. Calculate q.
2
Let b(h) be the first derivative of -h8⁄1344 + h7⁄280 + h6⁄120 + h2⁄2 - 20*h - 61. Let m(v) be the second derivative of b(v). Factor m(l).
-l*3(l - 4)*(l + 1)/4
Let h = 52891 + -264454⁄5. Factor 0 + 3⁄5*o4 + 1⁄5*o2 + h*o5 + 0*o + 3⁄5*o3.
o2*(o + 1)3⁄5
Let t(g) be the first derivative of 7*g5⁄4 + 15*g4 + 175*g3⁄6 + 15*g2 - 25*g/4 - 797. Let t(d) = 0. What is d?
-5, -1, 1⁄7
Let v = -38⁄17 + 93⁄34. Let t(q) be the second derivative of 1⁄3*q3 + 0 + 1⁄5*q6 + 0*q2 - 1⁄10*q5 - 12*q - v*q**4. Solve t(n) = 0 for n.
-1, 0, 1⁄3, 1
Let d(n) be the first derivative of n6⁄360 + n5⁄120 + 3*n3 - n2⁄2 - 3. Let p(u) be the third derivative of d(u). Find s such that p(s) = 0.
-1, 0
Let f = 57161 - 57158. Let 0 - 1⁄6*v2 + 1⁄6*vf - 2*v = 0. Calculate v.
-3, 0, 4