Let a(g) be the first derivative of 0*g3 - 2 + 0*g4 - 3*g2 - 1⁄330*g5 + 0*g. Let b(x) be the second derivative of a(x). Solve b(l) = 0.
0
Let h be (-1)/(226/(-296) + (-6)/(-8)). Factor 5*t + 36*t2 + 33*t2 - h*t**2 + 5 + 5.
-5(t - 2)(t + 1)
Let r(d) be the first derivative of 3⁄17*d2 + 8⁄17*d3 - 4⁄17*d + 58 + 7⁄34*d**4. Factor r(z).
2*(z + 1)*2(7*z - 2)/17
Let z(w) be the first derivative of 5*w3⁄3 - 275*w2 - 1120*w - 1635. Determine p so that z(p) = 0.
-2, 112
Let w = 488108⁄5 + -97618. Let -w*b**2 - 4⁄5*b + 0 = 0. Calculate b.
-2⁄9, 0
Let r(k) be the second derivative of k4⁄84 - 16*k3⁄21 + 30*k**2⁄7 + k + 430. Let r(s) = 0. What is s?
2, 30
Let p be 4 + (4 + (-7 - 7) - -8). Let t(b) be the first derivative of -9 - 5*bp - 15*b + 5⁄3*b3. Suppose t(w) = 0. What is w?
-1, 3
Let p be (-184)/(-96) + (-48)/(-576). Suppose 1⁄5*u**2 + 5 - p*u = 0. What is u?
5
Let d = -91⁄15 + 32⁄5. Let l be (1/(-3))/(12/(-48)). Factor -4⁄3*z + l + d*z**2.
(z - 2)**2⁄3
Let u(t) be the first derivative of -t4⁄32 - 13*t3⁄16 + 21*t**2⁄8 - 2*t + 56. Let v(m) be the first derivative of u(m). Factor v(x).
-3(x - 1)(x + 14)/8