Let d© = -c2 + c - 1. Let g = 0 + -2. Let s(n) = n2 + 10*n2 - 23*n + 5*n - 8*n2 + 18. Let f(z) = g*d(z) + s(z). Determine t, given that f(t) = 0.
2
Let a(n) = -n2 - n - 7. Suppose b + 0*b = 7. Let k(m) = -9*m - 4 + 18*m + 1 - 1 - m2 - 10*m. Let i(j) = b*k(j) - 4*a(j). Factor i(d).
-3d(d + 1)
Let q(n) be the first derivative of -n3⁄3 - 42*n2 + 85*n + 1473. Factor q(g).
-(g - 1)*(g + 85)
What is o in 168⁄17 + 14⁄17*o2 - 2⁄17*o3 + 184⁄17*o = 0?
-6, -1, 14
Factor -8*y - 4*y3 + 17*y2 - 63*y2 + 37*y2 + 3*y**3.
-y(y + 1)(y + 8)
Suppose 476*i - 472*i = 20. Let d(l) be the first derivative of -2⁄45*li - 4⁄27*l3 + 2 - 1⁄6*l4 + 0*l2 + 0*l. Let d(h) = 0. What is h?
-2, -1, 0
Let u(y) = -y2 + 12*y - 7. Suppose -21*t = -17*t - 44. Let f be u(t). Suppose 16 + 0*k - 3*k + 19*k + 8*k2 - f*k**2 = 0. Calculate k.
-2
Suppose -50*x = 306 - 306. Let l(a) be the second derivative of x + 18*a - 7⁄110*a5 + 1⁄33*a6 + 7⁄33*a3 - 1⁄22*a4 - 2⁄11*a**2. Solve l(b) = 0 for b.
-1, 2⁄5, 1
Let q(n) be the second derivative of -n6⁄30 + 16*n5⁄15 - 29*n4⁄6 + 28*n3⁄3 + 65*n**2⁄2 - 40*n. Let o(s) be the first derivative of q(s). Factor o(k).
-4(k - 14)(k - 1)**2
Determine n, given that -14*n + 245*n2 + 3*n3 + 4*n + 4*n - 242*n**2 = 0.
-2, 0, 1