Let d© = -c2 + c - 1. Let g = 0 + -2. Let s(n) = n2 + 10*n2 - 23*n + 5*n - 8*n2 + 18. Let f(z) = g*d(z) + s(z). Determine t, given that f(t) = 0.

2

Let a(n) = -n2 - n - 7. Suppose b + 0*b = 7. Let k(m) = -9*m - 4 + 18*m + 1 - 1 - m2 - 10*m. Let i(j) = b*k(j) - 4*a(j). Factor i(d).

-3d(d + 1)

Let q(n) be the first derivative of -n33 - 42*n2 + 85*n + 1473. Factor q(g).

-(g - 1)*(g + 85)

What is o in 16817 + 1417*o2 - 217*o3 + 18417*o = 0?

-6, -1, 14

Factor -8*y - 4*y3 + 17*y2 - 63*y2 + 37*y2 + 3*y**3.

-y(y + 1)(y + 8)

Suppose 476*i - 472*i = 20. Let d(l) be the first derivative of -245*li - 427*l3 + 2 - 16*l4 + 0*l2 + 0*l. Let d(h) = 0. What is h?

-2, -1, 0

Let u(y) = -y2 + 12*y - 7. Suppose -21*t = -17*t - 44. Let f be u(t). Suppose 16 + 0*k - 3*k + 19*k + 8*k2 - f*k**2 = 0. Calculate k.

-2

Suppose -50*x = 306 - 306. Let l(a) be the second derivative of x + 18*a - 7110*a5 + 133*a6 + 733*a3 - 122*a4 - 211*a**2. Solve l(b) = 0 for b.

-1, 25, 1

Let q(n) be the second derivative of -n630 + 16*n515 - 29*n46 + 28*n33 + 65*n**22 - 40*n. Let o(s) be the first derivative of q(s). Factor o(k).

-4(k - 14)(k - 1)**2

Determine n, given that -14*n + 245*n2 + 3*n3 + 4*n + 4*n - 242*n**2 = 0.

-2, 0, 1