Let l(y) = 8*y + 3*y2 - 11 + 0*y2 + 5*y. Let t(f) = -2*f**2 - 7*f + 6. Suppose 35*a - 40 = 43*a. Let d(k) = a*t(k) - 3*l(k). Factor d(v).
(v - 3)*(v - 1)
Let g(t) be the first derivative of -1⁄3*t3 + 8⁄7*t2 + 73 - 4⁄7*t. Solve g(w) = 0.
2⁄7, 2
Suppose 4*c - 153*c = 0. Factor 0 - 3⁄8*y2 + c*y - 9⁄4*y3.
-3*y*2(6*y + 1)/8
Let f = -359 + 512. Determine k so that 4 - k4 - 2*k + k2 - 148*k3 + f*k3 - k**5 - 6*k = 0.
-2, 1
Let v(j) be the third derivative of -j7⁄630 + 23*j6⁄180 - 143*j5⁄45 + 121*j4⁄9 - 6*j**2 - 3*j. Factor v©.
-c*(c - 22)*2(c - 2)/3
Let u be (-15)/(-60) + (-51)/612. Solve 17⁄3*h + u*h**2 + 289⁄6 = 0 for h.
-17
Factor -40⁄3*d - 13⁄3 - d**2.
-(d + 13)*(3*d + 1)/3
What is d in -1⁄4*d + 1⁄4*d3 - 5⁄2 + 5⁄2*d2 = 0?
-10, -1, 1
Let j(a) be the third derivative of 1⁄3*a3 + 3*a2 - 1⁄72*a4 - 1⁄30*a5 + 1⁄360*a**6 + 20*a + 0. Suppose j(b) = 0. Calculate b.
-1, 1, 6
Let i(h) be the second derivative of 0 + 22*h + 1⁄14*h7 - 5⁄2*h4 - 1⁄2*h6 - 3⁄2*h2 + 3⁄2*h5 + 5⁄2*h3. Factor i(v).
3*(v - 1)**5