Let h(w) be the second derivative of w4⁄42 - 10*w3⁄21 + 3*w**2 - 598*w. Let h(l) = 0. What is l?
3, 7
Let o(z) = -3*z2 - 66*z + 51. Let i(b) be the third derivative of b5⁄60 + 4*b4⁄3 - 25*b3⁄6 - 2*b**2 + 6. Let c(x) = -9*i(x) - 4*o(x). Factor c(v).
3(v - 7)(v - 1)
Let x(g) = 3*g2 - 22*g - 52. Let m(u) be the first derivative of -u3 + 21*u**2⁄2 + 51*u - 2. Let p(o) = 4*m(o) + 3*x(o). Factor p(h).
-3(h - 8)(h + 2)
Let i(s) = s2 + 22*s + 99. Let o be i(-16). Suppose 15*z = -o + 3. Factor -j3 + 1⁄2*j**2 + z*j + 0.
-j*2(2*j - 1)/2
Find s such that 144*s2 + 42025*s - 554*s2 - 673*s3 + 674*s3 = 0.
0, 205
Let f(i) be the third derivative of -i6⁄240 - 7*i5⁄10 + i4⁄48 + 7*i3 - 1122*i**2. Factor f(n).
-(n - 1)(n + 1)(n + 84)/2
Let w = -909088⁄3 - -303042. Let t = 584⁄15 - 168⁄5. Suppose 14⁄3*b3 - 8⁄3 + w*b2 + t*b = 0. What is b?
-2, -1, 2⁄7
Suppose 3*m = -2*r - 5, 0 = 3*r - 3*m - 0*m - 30. Factor -75*i + r*i5 - 13*i3 - 16*i3 - 21*i3 - 100*i**2 - 20.
5(i - 4)(i + 1)**4
Let f(b) be the second derivative of -2*b6⁄15 - 7*b5⁄5 + 6*b**4 - 774*b. Determine g so that f(g) = 0.
-9, 0, 2
Let h(p) = 3*p5 + 2*p4 - 4*p3 + p + 4. Let f(y) = -1 + 87*y4 - 177*y4 + 4*y - y5 - 3*y - y2 + 89*y4. Let j© = -2*f© - h©. Factor j(t).
-(t - 2)(t - 1)(t + 1)**3