Let s(p) be the second derivative of p5⁄40 + 281*p4⁄24 + 10*p + 22. Factor s(w).
w*2(w + 281)/2
Let q(u) be the third derivative of -2⁄75*u6 - 1⁄75*u5 + 15 + 0*u3 - 1⁄336*u8 - 2*u2 + 0*u - 17⁄1050*u7 + 0*u**4. Let q(f) = 0. What is f?
-2, -1, -2⁄5, 0
Let u(l) = -l4 + 3*l3 - 10*l2 + 12*l - 4. Let q(w) = -w3 - 1999*w + 1999*w + w**2. Let b(v) = -3*q(v) + u(v). Factor b(o).
-(o - 2)2*(o - 1)2
Let n(w) be the third derivative of -w6⁄240 + 13*w5⁄12 + 263*w4⁄48 + 11*w3 - 175*w**2 + w. Determine j so that n(j) = 0.
-1, 132
Let n = 77 - 53. Let m® = -29*r2 - 45 + 141*r + 57 - 46 - n*r. Let v(l) = -19*l2 + 78*l - 23. Let s(g) = -5*m(g) + 7*v(g). Factor s(d).
3(d - 3)(4*d - 1)
Suppose -5*v - 2*s - 3*s = -35, -4*v = 3*s - 24. Suppose -4*f = k - v*f, 2*f + 28 = 5*k. Factor 1⁄11*c5 + 1⁄11*ck + 0*c + 0 - 1⁄11*c3 - 1⁄11*c2.
c2(c - 1)(c + 1)2⁄11
Let v be ((-26)/91)/(4/(-266)). Suppose 9 = -5*z - 4*u + v, -u = -z + 11. Determine j, given that 18⁄5*j5 - z*j4 + 0 - 28⁄5*j3 + 24⁄5*j2 + 16⁄5*j = 0.
-2⁄3, 0, 1, 2
Let b(a) be the first derivative of a4⁄26 - 238*a3⁄39 - 241*a**2⁄13 - 242*a/13 + 677. Determine p, given that b(p) = 0.
-1, 121
Let m(h) = -2*h4 + h3 + 3*h2 + 5. Let y(u) = 2*u4 - 2*u3 - 4*u2 - 4. Let n = -86 + 90. Let o(i) = n*m(i) + 5*y(i). Solve o® = 0 for r.
-1, 0, 4
Suppose -4*f - 15 = -5*m, 19*f - 2*m + 6 = 7*f. Let -2⁄5*b3 + 2⁄5*b + 1⁄5*b4 - 1⁄5*b**2 + f = 0. Calculate b.
-1, 0, 1, 2