Find c such that -12⁄5*c + 63⁄5 - 3⁄5*c**2 = 0.
-7, 3
Let y(g) = 115*g2 + 4130*g + 3945. Let l(x) = 13*x2 + 459*x + 438. Let k(z) = -35*l(z) + 4*y(z). Factor k(m).
5(m + 1)(m + 90)
Let s = 1586 - 3171⁄2. Let n be 1 - 15⁄6 - -4. Factor 3⁄2 - n*u + 1⁄2*u2 + s*u3.
(u - 1)*2(u + 3)/2
Let v(j) = -j2 - 1. Let y(p) = 256*p2 - 21*p + 61*p - 257*p**2 + 74. Let w(s) = s - 6. Let c be w(12). Let l(o) = c*v(o) - y(o). What is i in l(i) = 0?
-4
Let l(q) = -q3 + 13*q2 - 28*q + 70. Let w be l(11). Suppose 41*n - 46*n = 4*x - 6, -10 = -3*n + w*x. What is z in 2⁄17*z + 6⁄17*z**n - 4⁄17 = 0?
-1, 2⁄3
Let r(s) = -5*s4 - 59*s3 + 53*s2 + 59*s - 60. Let q(m) = m3 + 3*m**2 - m. Let n(h) = -4*q(h) - r(h). Factor n(i).
5*(i - 1)*2(i + 1)*(i + 12)
Factor 1⁄2*n5 + 285⁄2*n3 + 0*n + 361*n2 + 0 - 18*n4.
n2*(n - 19)2*(n + 2)/2
Factor -18⁄5*q**2 - 8⁄5 + 26⁄5*q.
-2(q - 1)(9*q - 4)/5
Determine i so that 144⁄7*i - 134⁄7*i2 + 72⁄7 - 10⁄7*i3 + 16⁄7*i**4 = 0.
-3, -3⁄8, 2
Let p(d) be the first derivative of -6*d6 - 12*d5⁄5 + 15*d4⁄4 + 2*d3 - 1629. Factor p(s).
-3*s2*(2*s + 1)2*(3*s - 2)