Let v(y) = -14*y3 + 30*y2 - 10*y + 12. Let b(h) = -5*h3 + 10*h2 - 3*h + 6. Let t(m) = -11*b(m) + 4*v(m). Let t(f) = 0. Calculate f.
-1, 2, 9
Let l = -100 - -140. Solve -l*f5 + 17*f5 + 3*f + 12*f5 - 3*f4 - 3 - 6*f3 + 6*f2 + 14*f**5 = 0.
-1, 1
Let q(f) = 15*f3 + 475*f2 - 17985*f + 17415. Let x(w) = 2*w3 - 12*w2 + w + 1. Let p(b) = q(b) - 10*x(b). Factor p(m).
-5*(m - 59)*2(m - 1)
Let z be -43 + 44 - 1*-5. Let s be z/2 - (-483)/(-189). Solve 4⁄9*b3 - 4⁄9 - 4⁄9*b + s*b2 = 0 for b.
-1, 1
Suppose -4f = -2 + 14. Let p be 2/f-3*2. Determine i so that 140*i3 + 120*ip + i + 32*i5 - 30*i2 + 90*i**2 + 7*i = 0.
-2, -1, -1⁄2, -1⁄4, 0
Factor -495⁄2 - 3⁄2*i**2 + 87*i.
-3(i - 55)(i - 3)/2
Let f(w) = 80*w2 + 485*w - 55. Let s(a) = 247 + 18*a + 245 - 494 + 3*a2. Let g be (3⁄3)/(1⁄55). Let y(d) = g*s(d) - 2*f(d). What is r in y® = 0?
-4, 0
Let s(o) be the first derivative of o6⁄900 - o5⁄150 + o4⁄60 - o3⁄45 - 7*o**2⁄2 - 34. Let w(n) be the second derivative of s(n). Factor w(v).
2*(v - 1)**3⁄15
Let o(b) be the second derivative of b4⁄48 - 23*b3⁄6 + 529*b**2⁄2 - 2*b + 243. Determine z, given that o(z) = 0.
46
Let l(w) be the third derivative of -w6⁄660 + w5⁄30 + 25*w4⁄132 + 13*w3⁄33 - 407*w**2. Find b such that l(b) = 0.
-1, 13