Let x(u) be the first derivative of 2*u3⁄3 + 70*u2 + 898. Factor x®.
2r(r + 70)
Let i(b) = -11*b2 - 99*b + 85. Let v(s) = 2*s2 + 3. Let m(w) = -3*i(w) - 15*v(w). Factor m(d).
3(d - 1)(d + 100)
Let b(h) be the first derivative of 80*h3⁄9 + 62*h2⁄3 - 24*h + 1105. Determine t, given that b(t) = 0.
-2, 9⁄20
Let s(p) = -3*p4 - 333*p3 - 9402*p2 - 9072*p - 15. Let m(t) = -t2 - t + 5. Let g(j) = -3*m(j) - s(j). Determine a so that g(a) = 0.
-55, -1, 0
Let m(y) be the first derivative of y5⁄15 + 11*y4⁄12 + 14*y3⁄9 - 22*y2⁄3 - 24*y + 839. Determine w, given that m(w) = 0.
-9, -2, 2
Let r be (7/(-14))/((-4)/24). Suppose 4*j = -0*w + 4*w, -2*j = r*w. Find g, given that j - 2⁄9*g + 4⁄9*g**2 = 0.
0, 1⁄2
Let b(x) be the first derivative of 5⁄4*x4 + 5*x3 - 5*x2 - 57 + 5⁄6*x6 - 3*x**5 + 0*x. Solve b(d) = 0.
-1, 0, 1, 2
Let z(h) be the second derivative of 0 - 1⁄5*h2 + 0*h4 - 1⁄10*h3 + 1⁄100*h5 + 56*h. What is q in z(q) = 0?
-1, 2
Let h be (-2 - (0 - 11)) + (85 - 94). Let a(o) be the third derivative of -3*o2 + 0 + h*o + 1⁄30*o5 + 1⁄60*o6 + 0*o3 - 1⁄6*o**4. Factor a(k).
2k(k - 1)*(k + 2)
Let x be 2/((-185)/95 + 10⁄5). Suppose x*t = 34*t. Factor 0 + t*o2 - 3⁄2*o + 3⁄2*o3.
3o(o - 1)*(o + 1)/2