Let a = 15613⁄2 - 7779. Factor -15*v2 + a*v - 15 + 5⁄2*v3.
5(v - 3)(v - 2)*(v - 1)/2
Let t(y) be the first derivative of -9*y + 33⁄4*y2 + 3⁄10*y5 - 9⁄8*y4 + 39 - 3⁄2*y3. Factor t(s).
3(s - 3)(s - 1)*2(s + 2)/2
Let f© be the third derivative of -c5⁄100 + 21*c4⁄40 + 36*c3⁄5 - 191*c2. Let f(z) = 0. What is z?
-3, 24
Let o(a) be the first derivative of 1⁄3*a3 - 4*a2 + 16*a - 63. Find z such that o(z) = 0.
4
Let k = -220 - -220. Factor 0*i4 + 0*i2 + 0 - 5⁄3*i3 + k*i + 5⁄3*i5.
5*i*3(i - 1)*(i + 1)/3
Let o = 27 - 32. Let z be ((-6)/(-8))/(o/(-60)). Let 14*n4 - 2*n5 - z*n4 - 3*n5 = 0. Calculate n.
0, 1
Let l = 77782 - 77782. Determine s so that -2⁄19*s3 + l*s + 0 + 8⁄19*s2 = 0.
0, 4
Let s(m) be the first derivative of 3*m5⁄35 - 3*m4⁄2 + 53*m3⁄7 + 30*m2⁄7 - 900*m/7 + 944. Solve s(y) = 0 for y.
-2, 5, 6
Let t(v) be the first derivative of v6⁄1080 - v5⁄60 + v4⁄8 - v3 - 11*v**2⁄2 + 34. Let k® be the third derivative of t®. Factor k(q).
(q - 3)**2⁄3
Find x, given that 3⁄4*x**2 - 18*x + 105 = 0.
10, 14