Let y(o) be the first derivative of -o5⁄12 - o4⁄3 - 8*o3⁄15 + o2 + 35*o + 41. Let k(t) be the second derivative of y(t). Factor k(b).
-(5*b + 4)**2⁄5
Let u(j) be the second derivative of -j7⁄2016 - 17*j6⁄576 + j4⁄6 + 3*j2 + 74*j. Let o(i) be the third derivative of u(i). Factor o(w).
-5w(w + 17)/4
Suppose -z = -3*z. Let s = 128889 - 128886. Factor -1⁄7*t2 + 0*t - 2⁄7*ts - 1⁄7*t**4 + z.
-t2*(t + 1)2⁄7
Let h(j) be the first derivative of j4⁄12 + 134*j3⁄9 + 265*j**2⁄6 + 44*j + 1381. Factor h(o).
(o + 1)*2(o + 132)/3
Factor 2*b - 2*b3 + 485*b2 - 453*b**2 - 28*b - 60.
-2(b - 15)(b - 2)*(b + 1)
Let p(h) = 2*h - 28. Suppose 72 = 4*s - 4*t - 8, 0 = -2*s - 2*t + 20. Let m be p(s). Factor -9*v + 0*v - v2 - m*v2.
-3v(v + 3)
Let x(u) be the second derivative of -u7⁄189 + u6⁄15 - 3*u5⁄10 + 31*u4⁄54 - 4*u**3⁄9 - 311*u. Find h such that x(h) = 0.
0, 1, 3, 4
Let c(y) be the second derivative of y + 0*y4 - 3⁄20*y5 + 0*y2 + 13 + 0*y3. Let c® = 0. What is r?
0
Let w(u) be the third derivative of u6⁄180 - u5⁄12 - 11*u3⁄2 + 14*u2 + 2*u. Let q(y) be the first derivative of w(y). Factor q(z).
2z(z - 5)
Let l(p) be the second derivative of -p4⁄132 - 138*p3⁄11 - 85698*p**2⁄11 + 125*p - 4. Let l(n) = 0. What is n?
-414