Let t(k) = k**2 - 6*k. Let a be 9 + 4/(-7) + (-21)/49. Let i(o) = -a*o + 12*o - 5*o. Let s(x) = 5*i(x) - t(x). Factor s(p).

-p*(p - 1)

Factor -325*z + 315 + 144*z2 + 5*z3 + 128*z2 - 267*z2.

5(z - 7)(z - 1)*(z + 9)

Suppose 18 = 11*t - 15. Let w(g) be the third derivative of 172*g4 + 0*gt - 1360*g6 + 1630*g7 + 0 - 1180*g5 + 0*g - 17*g2. Factor w(v).

v*(v - 1)*2(v + 1)/3

Let v(l) be the second derivative of -l7357 + l651 - 3*l585 - 2*l451 + 8*l**351 - 3*l - 67. Let v(m) = 0. What is m?

-1, 0, 2

Determine r, given that -28896*r - 2346157*r2 + 487*r5 - 4116 + 93847*r4 + 65181*r3 = 0.

-98, -14, 1

Suppose -5*c + 15 = 5. Factor 139*j2 + 39*jc - 16 - 62*j**2 - 224*j.

4(j - 2)(29*j + 2)

Let i be (-364)/21*(-60)/260. Find n, given that -125 + 4025*n3 + 1625*n2 + 3545*ni + 1085*n5 - 65*n = 0.

-1, -12, 29

Let i(l) be the first derivative of -10*l + 6*l2 + 1 - 23*l3. Factor i(h).

-2(h - 5)(h - 1)

Let j(u) be the first derivative of -u5 - 55*u44 - 70*u3 - 160*u2 - 160*u - 337. Factor j(h).

-5(h + 1)(h + 2)*(h + 4)**2

Let o(u) = u3 + u2 - u - 1. Suppose 1 = -5*d + q - 4*q, -3 = 5*d + 4*q. Let f(b) = -10*b3 + 47*b2 - 68*b + 19. Let j® = d*o® + f®. Factor j(s).

-3(s - 3)(s - 2)*(3*s - 1)