Let t(k) = k**2 - 6*k. Let a be 9 + 4/(-7) + (-21)/49. Let i(o) = -a*o + 12*o - 5*o. Let s(x) = 5*i(x) - t(x). Factor s(p).
-p*(p - 1)
Factor -325*z + 315 + 144*z2 + 5*z3 + 128*z2 - 267*z2.
5(z - 7)(z - 1)*(z + 9)
Suppose 18 = 11*t - 15. Let w(g) be the third derivative of 1⁄72*g4 + 0*gt - 1⁄360*g6 + 1⁄630*g7 + 0 - 1⁄180*g5 + 0*g - 17*g2. Factor w(v).
v*(v - 1)*2(v + 1)/3
Let v(l) be the second derivative of -l7⁄357 + l6⁄51 - 3*l5⁄85 - 2*l4⁄51 + 8*l**3⁄51 - 3*l - 67. Let v(m) = 0. What is m?
-1, 0, 2
Determine r, given that -28896*r - 234615⁄7*r2 + 48⁄7*r5 - 4116 + 9384⁄7*r4 + 65181*r3 = 0.
-98, -1⁄4, 1
Suppose -5*c + 15 = 5. Factor 139*j2 + 39*jc - 16 - 62*j**2 - 224*j.
4(j - 2)(29*j + 2)
Let i be (-364)/21*(-60)/260. Find n, given that -12⁄5 + 402⁄5*n3 + 162⁄5*n2 + 354⁄5*ni + 108⁄5*n5 - 6⁄5*n = 0.
-1, -1⁄2, 2⁄9
Let i(l) be the first derivative of -10*l + 6*l2 + 1 - 2⁄3*l3. Factor i(h).
-2(h - 5)(h - 1)
Let j(u) be the first derivative of -u5 - 55*u4⁄4 - 70*u3 - 160*u2 - 160*u - 337. Factor j(h).
-5(h + 1)(h + 2)*(h + 4)**2
Let o(u) = u3 + u2 - u - 1. Suppose 1 = -5*d + q - 4*q, -3 = 5*d + 4*q. Let f(b) = -10*b3 + 47*b2 - 68*b + 19. Let j® = d*o® + f®. Factor j(s).
-3(s - 3)(s - 2)*(3*s - 1)