Let k(b) be the first derivative of 3*b4⁄4 + 255*b3 + 24192*b**2 - 49152*b - 975. Factor k(z).
3(z - 1)(z + 128)**2
Let r(g) be the second derivative of 2*g3⁄3 - 21*g2⁄2 + 10*g. Let z be r(7). Factor -z*s + 6 - 9*s2 + 0*s + 6*s2.
-(s + 3)*(3*s - 2)
Let m(i) be the first derivative of 3⁄55*i5 + 0*i - 73 + 0*i3 + 0*i2 - 5⁄66*i6 + 1⁄22*i**4. Let m(d) = 0. Calculate d.
-2⁄5, 0, 1
Let c = 7606⁄945 + -1048⁄135. Factor c*k - 2⁄7*k3 - 6⁄7*k2 + 6⁄7.
-2(k - 1)(k + 1)*(k + 3)/7
Let o = -54754 - -109523⁄2. Find f, given that o - 15⁄2*f2 - 5⁄4*f3 + 5⁄4*f = 0.
-6, -1, 1
Let b = 241073⁄10 - 24106. Let n(d) = 2*d2 - 4*d + 2. Let g be n(2). Solve -b*i - 11⁄10*ig - 1⁄5 = 0.
-1, -2⁄11
Let g(q) be the first derivative of -1⁄5*q2 + 16 + 2⁄15*q3 + 0*q. Factor g(b).
2b(b - 1)/5
Suppose 7*l - 104 = 20*l. Let v be 75⁄30*l/(-10). Factor 12⁄5*jv - 9⁄5*j + 0 - 3⁄5*j3.
-3j(j - 3)*(j - 1)/5
Factor 2⁄3*a3 + 364⁄3*a2 + 16562⁄3*a + 0.
2a(a + 91)**2⁄3
Let g(b) be the first derivative of -b6⁄72 - b5⁄4 + 16*b**3 + 2. Let i(m) be the third derivative of g(m). Find a such that i(a) = 0.
-6, 0