∫x^3·√(1+x^2)dx=(1/4)·∫√(1+x^2)dx^4,
设t=√(1+x^2),t>0,
则:t^2=1+x^2,∴ x^2=t^2-1,x^4=t^4-2t^2+1,
∴ 原式=(1/4)·∫√(1+x^2)dx^4
=(1/4)·∫t d(t^4-2t^2+1)
=(1/4)·∫(4t^3-4t)t dt
=∫(t^4-t^2)dt
=(1/5)·t^5-(1/3)·t^3
再把t=√(1+x^2)带入即可
∫x^3·√(1+x^2)dx=(1/4)·∫√(1+x^2)dx^4,
设t=√(1+x^2),t>0,
则:t^2=1+x^2,∴ x^2=t^2-1,x^4=t^4-2t^2+1,
∴ 原式=(1/4)·∫√(1+x^2)dx^4
=(1/4)·∫t d(t^4-2t^2+1)
=(1/4)·∫(4t^3-4t)t dt
=∫(t^4-t^2)dt
=(1/5)·t^5-(1/3)·t^3
再把t=√(1+x^2)带入即可