1.解 由均值不等式得
x^2/(1-x^2)+y^2/(1-y^2)+z^2/(1-z^2)
=[x^2/(1-x^2)+1]+[y^2/(1-y^2)+1]+[z^2/(1-z^2)+1]-3
=1/(1-x^2)+1/(1-y^2)+1/(1-z^2)-3
=3/[(1-x^2)(1-y^2)(1-z^2)]^(1⁄3)-3
=3/[((1-x^2)+(1-y^2)+(1-z^2))/3]-3
=9/[3-(x^2+y^2+z^2)]-3
=9⁄2-3
=3⁄2.
当x^2=y^2=z^2=1/3时,取得等号.
因此,x^2/(1-x^2)+y^2/(1-y^2)+z^2/(1-z^2)的最小值为3/2.
2.猜测原题为下面的不等式问题:
证明:对于任意实数a1,a2,…,an,有
|a1|+|a2|+…+|an|<=√[n((a1)^2+…+(an)^2)].
证明:由柯西不等式,得
|a1|+|a2|+…+|an|=1|a1|+1|a2|+…+1*|an|
<=√[(1^2+1^2+…+1^2)((a1)^2+…+(an)^2)]
=√[n((a1)^2+…+(an)^2)].