∫[x/√(x-3)]dx
=∫[(x-3)+3]/√(x-3)dx
=∫√(x-3)dx+3*∫1/√(x-3)dx
=∫(x-3)^(1⁄2)d(x-3)+3*∫(x-3)^(-1⁄2)d(x-3)
=(2⁄3)*(x-3)^(3⁄2)+3*2*√(x-3)+C
=(2⁄3)*(x-3)*√(x-3)+6*√(x-3)+C
=(2⁄3)*(x+6)*√(x-3)+C
——答案:A.
∫[x/√(x-3)]dx
=∫[(x-3)+3]/√(x-3)dx
=∫√(x-3)dx+3*∫1/√(x-3)dx
=∫(x-3)^(1⁄2)d(x-3)+3*∫(x-3)^(-1⁄2)d(x-3)
=(2⁄3)*(x-3)^(3⁄2)+3*2*√(x-3)+C
=(2⁄3)*(x-3)*√(x-3)+6*√(x-3)+C
=(2⁄3)*(x+6)*√(x-3)+C
——答案:A.