设随机变量X与Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5求E(2X+Y) D(2X-Y)
E(2X+Y)=-2; D(2X-Y)=12具体解法如下图:相关应用的性质:1、设X是随机变量,C是常数,则有E(CX)=CE(X)2、设X是随机变量,C是常数,则有D(CX)=C^D(X),D(X+C)=D(X)。扩展资料一、数学期望的性质:1、E(C)=C2、E(CX)=CE(X)3、E(X+Y)=E(X)+E(Y)4、当X和Y相互独立时,E(XY)=E(X)E(Y)二、相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量。参考资料来源百度百科-数学期望百度百科-相关系数
随机变量X和Y的数学期望分别是—2和2,方差分别是1和4,而相关系数为-0.5,求X+Y的期望和方差
E(ξ+η)=E(ξ)+E(η).E(X+Y)=E(X)+E(Y)=0.X+Y的数学期望为0D(X+Y)=D(X)+D(Y)+2COV(X,Y)ρXY=COV(X,Y)/√D(X)√D(Y),称为随机变量X和Y的相关系数。-0.5=COV(X,Y)/√1√4COV(X,Y)=-1D(X+Y)=D(X)+D(Y)+2COV(X,Y)=1+4+2(-1)=3X+Y的方差为3
设随机变量X和Y的数学期望为-2和2,方差为1和4,相关系数-0.5,根据切比雪夫不等式估计概率P{|X+Y|>=6}
E(X)=-2, E(Y)=2;D(X)=1, D(Y)=4;COV(X,Y)=-0.5;令Z=X+Y,则E(Z)=E(X)+E(Y)=0,D(Z)=D(X)+D(Y)+2COV(X,Y)=4,所以P{|X+Y|>=6}=P{|Z-E(Z)|>=6}<=D(Z)/6^2=1/9即P{|X+Y|>=6}<=1/9
如何求随机变量的数学期望?
数学期望的性质是:1、一个常数的期望是这个常数本身,写作E(C)=C。2、一个常数乘以随机变量X的期望,等于这个常数乘以X的期望,写作E(cX)=cE(X)E(cX)=cE(X)。3、随机变量X加Y的期望,等于X和Y各自期望的和,写作E(X+Y)=E(X)+E(Y)E(X+Y)=E(X)+E(Y)。4、随机变量X减Y的期望,等于X和Y各自期望的差,E(X−Y)=E(X)−E(Y)E(X−Y)=E(X)−E(Y)。注意:假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元。若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得**利润?并求出最大利润的期望值。分析:由于该商品的需求量(销售量)X是一个随机变量,它在区间[10,30]上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数
求随机变量x, y的期望和方差。
计算如下:设随机变量X~N(0,1),Y~N(0,1),且X与Y相互独立,即自由度为2的塔方分布。若 X~N(0,1) 则 X^2~Ga(1/2,1/2)根据Ga分布的可加性得χ^2~Ga(n/2,1/2);所以X^2+Y^2~χ^2(2)。基本类型简单地说,随机变量是指随机事件的数量表现。例如一批注入某种毒物的动物,在一定时间内死亡的只数;某地若干名男性健康成人中,每人血红蛋白量的测定值;等等。另有一些现象并不直接表现为数量,例如人口的男女性别、试验结果的阳性或阴性等,但我们可以规定男性为1,女性为0,则非数量标志也可以用数量来表示。这些例子中所提到的量,尽管它们的具体内容是各式各样的,但从数学观点来看,它们表现了同一种情况,这就是每个变量都可以随机地取得不同的数值,而在进行试验或测量之前,我们要预言这个变量将取得某个确定的数值是不可能的。