Factor 6⁄7*l2 - 32⁄21 - 4⁄7*l - 2⁄21*l3.
-2(l - 8)(l - 2)*(l + 1)/21
Let u = 1912 - 5735⁄3. Let y(b) be the second derivative of 1⁄21*b7 + 0*b2 + 18*b + 0 - 1⁄5*b5 + u*b3 + 0*b6 + 0*b4. Factor y(p).
2p(p - 1)2*(p + 1)2
Let l(i) be the first derivative of i6⁄4 - 3*i5⁄10 - 3*i4 + 6*i3 + 711. Let l(j) = 0. What is j?
-3, 0, 2
Let o = -2 - -5. Suppose 4*a - 4*q - 16 = 4, -3*q + 13 = 4*a. Find f such that 12*f + a*f4 - 8 + 4*f2 - 11*fo - 5*f3 + 0*f3 + 4*f3 = 0.
-1, 1, 2
Let z(t) be the second derivative of -1⁄180*t6 - 7⁄18*t3 - 1⁄60*t5 + 1⁄6*t4 + 5⁄12*t**2 + 0 - 38*t. Find i, given that z(i) = 0.
-5, 1
Let r be -66*(6⁄2 + (-155)/93). Let n = r - -90. Find b, given that 0 + 0*b + 3⁄2*bn - 5⁄2*b4 - b**3 = 0.
-1, 0, 3⁄5
Let s be 48/(-80) + (-46)/(-10). Let j(k) be the first derivative of 0*k + 1⁄9*k3 + s + 0*k2. Factor j(x).
x**2⁄3
Let k = 42 - 20. Suppose t = k - 18. Determine s, given that s3 - 3*st - 2*s - 2 + 2 + 31*s2 + s5 - 28*s**2 = 0.
-1, 0, 1, 2
Determine s so that 129*s2 - 21*s3 + 625 - 823 - 51*s + 9*s4 - 12*s4 = 0.
-11, -1, 2, 3
Let k(a) be the first derivative of 1⁄5*a5 + 0*a6 - 1⁄3*a3 + 4*a - 1⁄21*a7 + 0*a4 + 9 + 0*a2. Let i(y) be the first derivative of k(y). Factor i(o).
-2o(o - 1)2*(o + 1)2